These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35493146)
1. 1,2-Dimyristoyl- Han D; Zhang B; Dong J; Yang B; Peng Y; Wang J; Wang L RSC Adv; 2021 Oct; 11(56):35455-35462. PubMed ID: 35493146 [TBL] [Abstract][Full Text] [Related]
2. Superparamagnetic iron oxide nanoparticles modified with dimyristoylphosphatidylcholine and their distribution in the brain after injection in the rat substantia nigra. Su L; Zhang B; Huang Y; Zhang H; Xu Q; Tan J Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():400-406. PubMed ID: 28887991 [TBL] [Abstract][Full Text] [Related]
3. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
4. Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Aliakbari M; Mohammadian E; Esmaeili A; Pahlevanneshan Z Toxicol In Vitro; 2019 Feb; 54():114-122. PubMed ID: 30266435 [TBL] [Abstract][Full Text] [Related]
5. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI. Yang G; Ma W; Zhang B; Xie Q Mater Sci Eng C Mater Biol Appl; 2016 May; 62():384-90. PubMed ID: 26952437 [TBL] [Abstract][Full Text] [Related]
6. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Santhosh PB; Drašler B; Drobne D; Kreft ME; Kralj S; Makovec D; Ulrih NP Int J Nanomedicine; 2015; 10():6089-103. PubMed ID: 26491286 [TBL] [Abstract][Full Text] [Related]
7. Subcellular distributions of iron oxide nanoparticles in rat brains affected by different surface modifications. Wang S; Zhang B; Su L; Nie W; Han D; Han G; Zhang H; Chong C; Tan J J Biomed Mater Res A; 2019 Sep; 107(9):1988-1998. PubMed ID: 31067350 [TBL] [Abstract][Full Text] [Related]
8. The synthesis and characterization of glutathione-modified superparamagnetic iron oxide nanoparticles and their distribution in rat brains after injection in substantia nigra. Han G; Zhang B; Zhang H; Han D; Tan J; Yang B J Mater Sci Mater Med; 2018 Dec; 30(1):5. PubMed ID: 30569308 [TBL] [Abstract][Full Text] [Related]
9. High-purity 1,2-dimyristoyl- Kim SY; Park YL; Ji HE; Lee HS; Chang HJ; Bang GH; Lee JH Front Nutr; 2024; 11():1408937. PubMed ID: 39045285 [TBL] [Abstract][Full Text] [Related]
10. A strategy for iron oxide nanoparticles to adhere to the neuronal membrane in the substantia nigra of mice. Han D; Zhang B; Chong C; Rong C; Tan J; Yang R J Mater Chem B; 2020 Jan; 8(4):758-766. PubMed ID: 31897462 [TBL] [Abstract][Full Text] [Related]
12. Surface Modification with Chondroitin Sulfate Targets Nanoparticles to the Neuronal Cell Membrane in the Substantia Nigra. Nie W; Zhang B; Pan R; Wang S; Yan X; Tan J ACS Chem Neurosci; 2020 Jan; 11(2):197-204. PubMed ID: 31867955 [TBL] [Abstract][Full Text] [Related]
14. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914 [TBL] [Abstract][Full Text] [Related]
15. Modulation of membrane properties by silver nanoparticles probed by curcumin embedded in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine liposomes. Wehbe N; Patra D; Abdel-Massih RM; Baydoun E Colloids Surf B Biointerfaces; 2019 Jan; 173():94-100. PubMed ID: 30273873 [TBL] [Abstract][Full Text] [Related]
16. Interaction of 5-fluorouracil loaded nanoparticles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes used as a cellular membrane model. Lopes S; Simeonova M; Gameiro P; Rangel M; Ivanova G J Phys Chem B; 2012 Jan; 116(1):667-75. PubMed ID: 22148190 [TBL] [Abstract][Full Text] [Related]
17. Advancing the Frontiers of Neuroelectrodes: A Paradigm Shift towards Enhanced Biocompatibility and Electrochemical Performance. Wang Q; Liu Y; Zhang B; Dong J; Wang L Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891404 [TBL] [Abstract][Full Text] [Related]
18. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking. Durney BC; Bachert BA; Sloane HS; Lukomski S; Landers JP; Holland LA Anal Chim Acta; 2015 Jun; 880():136-44. PubMed ID: 26092346 [TBL] [Abstract][Full Text] [Related]
19. Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. Reczyńska K; Marszałek M; Zarzycki A; Reczyński W; Kornaus K; Pamuła E; Chrzanowski W Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486431 [TBL] [Abstract][Full Text] [Related]
20. Mutual structural effect of bilirubin and model membranes by vibrational circular dichroism. Novotná P; Goncharova I; Urbanová M Biochim Biophys Acta; 2014 Mar; 1838(3):831-41. PubMed ID: 24355499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]