These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35493568)

  • 21. Hydrogen storage inside graphene-oxide frameworks.
    Chan Y; Hill JM
    Nanotechnology; 2011 Jul; 22(30):305403. PubMed ID: 21719967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved hydrogen storage kinetics of nanoconfined NaAlH₄ catalyzed with TiCl₃ nanoparticles.
    Nielsen TK; Polanski M; Zasada D; Javadian P; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    ACS Nano; 2011 May; 5(5):4056-64. PubMed ID: 21446760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A reversible nanoconfined chemical reaction.
    Nielsen TK; Bösenberg U; Gosalawit R; Dornheim M; Cerenius Y; Besenbacher F; Jensen TR
    ACS Nano; 2010 Jul; 4(7):3903-8. PubMed ID: 20533850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amorphous-Carbon-Supported Ultrasmall TiB
    Zhang X; Zhang X; Ren Z; Hu J; Gao M; Pan H; Liu Y
    Front Chem; 2020; 8():419. PubMed ID: 32500061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Development in Nanoconfined Hydrides for Energy Storage.
    Comanescu C
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoconfined hydrides for energy storage.
    Nielsen TK; Besenbacher F; Jensen TR
    Nanoscale; 2011 May; 3(5):2086-98. PubMed ID: 21387024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4.
    Adelhelm P; de Jong KP; de Jongh PE
    Chem Commun (Camb); 2009 Nov; (41):6261-3. PubMed ID: 19826688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material.
    Bellosta von Colbe JM; Felderhoff M; Bogdanović B; Schüth F; Weidenthaler C
    Chem Commun (Camb); 2005 Oct; (37):4732-4. PubMed ID: 16175308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen bonding in sodium alanate: a muon spin rotation study.
    Kadono R; Shimomura K; Satoh KH; Takeshita S; Koda A; Nishiyama K; Akiba E; Ayabe RM; Kuba M; Jensen CM
    Phys Rev Lett; 2008 Jan; 100(2):026401. PubMed ID: 18232891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.
    Cho ES; Ruminski AM; Aloni S; Liu YS; Guo J; Urban JJ
    Nat Commun; 2016 Feb; 7():10804. PubMed ID: 26902901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.
    Zhang J; Zhu Y; Lin H; Liu Y; Zhang Y; Li S; Ma Z; Li L
    Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28417577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress and Advances in Porous Silica-based Scaffolds for Enhanced Solid-state Hydrogen Storage: A Systematic Literature Review.
    Abdulkadir BA; Jalil AA; Cheng CK; Setiabudi HD
    Chem Asian J; 2024 Jan; 19(2):e202300833. PubMed ID: 37997488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH
    White JL; Rowberg AJE; Wan LF; Kang S; Ogitsu T; Kolasinski RD; Whaley JA; Baker AA; Lee JRI; Liu YS; Trotochaud L; Guo J; Stavila V; Prendergast D; Bluhm H; Allendorf MD; Wood BC; El Gabaly F
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4930-4941. PubMed ID: 30630309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4.
    Ngene P; Verkuijlen MH; Zheng Q; Kragten J; van Bentum PJ; Bitter JH; de Jongh PE
    Faraday Discuss; 2011; 151():47-58; discussion 95-115. PubMed ID: 22455062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of doped transition metal on reversible hydrogen release/uptake from NaAlH4.
    Liu J; Han Y; Ge Q
    Chemistry; 2009; 15(7):1685-95. PubMed ID: 19115295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics and kinetics of NaAlH4 nanocluster decomposition.
    Bhakta RK; Maharrey S; Stavila V; Highley A; Alam T; Majzoub E; Allendorf M
    Phys Chem Chem Phys; 2012 Jun; 14(22):8160-9. PubMed ID: 22569707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.
    Dovgaliuk I; Jepsen LH; Safin DA; Łodziana Z; Dyadkin V; Jensen TR; Devillers M; Filinchuk Y
    Chemistry; 2015 Oct; 21(41):14562-70. PubMed ID: 26306666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nickel-Platinum Nanoparticles Supported on Zeolitic Imidazolate Framework/Graphene Oxide as High-Performance Adsorbents for Ambient-Temperature Hydrogen Storage.
    Zhang J; Ji D; Zhou H; Yan X; Yuan A
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1400-406. PubMed ID: 29687973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: structure and energetics.
    Liu J; Ge Q
    J Phys Chem B; 2006 Dec; 110(51):25863-8. PubMed ID: 17181233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.