These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35493673)
1. KOH activation of coal-derived microporous carbons for oxygen reduction and supercapacitors. Guo S; Guo B; Ma R; Zhu Y; Wang J RSC Adv; 2020 Apr; 10(27):15707-15714. PubMed ID: 35493673 [TBL] [Abstract][Full Text] [Related]
2. Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. Qi J; Jin B; Bai P; Zhang W; Xu L RSC Adv; 2019 Aug; 9(42):24344-24356. PubMed ID: 35527884 [TBL] [Abstract][Full Text] [Related]
3. An Effective Strategy to Synthesize Well-Designed Activated Carbon Derived from Coal-Based Carbon Dots via Oxidation before Activation with a Low KOH Content as Supercapacitor Electrodes. Zhang Y; Jia J; Sun Y; Xu B; Jiang Z; Qu X; Zhang C Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999263 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation. Yue XM; An ZY; Ye M; Liu ZJ; Xiao CC; Huang Y; Han YJ; Zhang SQ; Zhu JS Molecules; 2019 Oct; 24(19):. PubMed ID: 31590393 [TBL] [Abstract][Full Text] [Related]
5. Rational design of dense microporous carbon derived from coal tar pitch towards high mass loading supercapacitors. Yang X; Sun G; Wang F; Li X; Zhang Z; Zhen Y; Wang D; Gao X; Fu F; Chi R J Colloid Interface Sci; 2023 Sep; 646():228-237. PubMed ID: 37196496 [TBL] [Abstract][Full Text] [Related]
6. High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons. Yu J; Fu N; Zhao J; Liu R; Li F; Du Y; Yang Z ACS Omega; 2019 Oct; 4(14):15904-15911. PubMed ID: 31592460 [TBL] [Abstract][Full Text] [Related]
7. Hierarchical N-Doped Porous Carbons for Zn-Air Batteries and Supercapacitors. Guo B; Ma R; Li Z; Guo S; Luo J; Yang M; Liu Q; Thomas T; Wang J Nanomicro Lett; 2020 Jan; 12(1):20. PubMed ID: 34138057 [TBL] [Abstract][Full Text] [Related]
8. Green and scalable synthesis of 3D porous carbons microstructures as electrode materials for high rate capability supercapacitors. Bello A; Dangbegnon J; Momodu DY; Ochai-Ejeh FO; Oyedotun KO; Manyala N RSC Adv; 2018 Dec; 8(71):40950-40961. PubMed ID: 35557928 [TBL] [Abstract][Full Text] [Related]
9. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density. Zhang Y; Tang Z Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941 [TBL] [Abstract][Full Text] [Related]
10. Novel Two-Dimensional Carbon-Chromium Nitride-Based Composite as an Electrocatalyst for Oxygen Reduction Reaction. Khan K; Tareen AK; Aslam M; Khan Q; Khan SA; Khan QU; Saleemi AS; Wang R; Zhang Y; Guo Z; Zhang H; Ouyang Z Front Chem; 2019; 7():738. PubMed ID: 31781536 [TBL] [Abstract][Full Text] [Related]
11. Fast Microwave Synthesis of Hierarchical Porous Carbons from Waste Palm Boosted by Activated Carbons for Supercapacitors. Liu C; Chen W; Hong S; Pan M; Jiang M; Wu Q; Mei C Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30861993 [TBL] [Abstract][Full Text] [Related]
12. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors. Zhou J; Bao L; Wu S; Yang W; Wang H Carbohydr Polym; 2017 Oct; 173():321-329. PubMed ID: 28732872 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical hollow tubular fibrous brucite-templated carbons obtained by KOH activation for supercapacitors. Liu F; Chuan X; Zhao Y RSC Adv; 2023 Feb; 13(10):6606-6618. PubMed ID: 36845586 [TBL] [Abstract][Full Text] [Related]
14. The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms. Skorupska M; Kamedulski P; Lukaszewicz JP; Ilnicka A Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803051 [TBL] [Abstract][Full Text] [Related]
15. Microporous Carbon Nanofibers Derived from Poly(acrylonitrile-co-acrylic acid) for High-Performance Supercapacitors. Li J; Song X; Zhang W; Xu H; Guo T; Zhang X; Gao J; Pang H; Xue H Chemistry; 2020 Mar; 26(15):3326-3334. PubMed ID: 31696587 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors. Wang Z; Zhou M; Chen H; Jiang J; Guan S Chem Asian J; 2014 Oct; 9(10):2789-97. PubMed ID: 25100552 [TBL] [Abstract][Full Text] [Related]
17. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction. Xu J; Lu S; Chen X; Wang J; Zhang B; Zhang X; Xiao C; Ding S Nanotechnology; 2017 Dec; 28(48):485701. PubMed ID: 29039353 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical porous carbon derived from carboxylated coal-tar pitch for electrical double-layer capacitors. Wang H; Zhu H; Li Y; Qi D; Wang S; Shen K RSC Adv; 2019 Sep; 9(50):29131-29140. PubMed ID: 35528400 [TBL] [Abstract][Full Text] [Related]
19. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Liang Q; Ye L; Huang ZH; Xu Q; Bai Y; Kang F; Yang QH Nanoscale; 2014 Nov; 6(22):13831-7. PubMed ID: 25300494 [TBL] [Abstract][Full Text] [Related]
20. N-self-doped porous carbon derived from animal-heart as an electrocatalyst for efficient reduction of oxygen. Yang B; Gao J; Xie M; Zuo S; Kang H; Sun Y; Xu X; Wang W; Gao C; Liu Y; Yan J J Colloid Interface Sci; 2020 Nov; 579():832-841. PubMed ID: 32679380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]