These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35493886)

  • 1. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction.
    Wang X; Hao J; Deng L; Zhao H; Liu Q; Li N; He R; Zhi K; Zhou H
    RSC Adv; 2020 Feb; 10(12):6944-6952. PubMed ID: 35493886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel hafnium-graphite oxide catalyst for the Meerwein-Ponndorf-Verley reaction and the activation effect of the solvent.
    Li X; Du Z; Wu Y; Zhen Y; Shao R; Li B; Chen C; Liu Q; Zhou H
    RSC Adv; 2020 Mar; 10(17):9985-9995. PubMed ID: 35498581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct use of the solid waste from oxytetracycline fermentation broth to construct Hf-containing catalysts for Meerwein-Ponndorf-Verley reactions.
    Chen Y; Yao X; Wang X; Zhang X; Zhou H; He R; Liu Q
    RSC Adv; 2021 Apr; 11(23):13970-13979. PubMed ID: 35423929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review.
    Liu Y; Liu X; Li M; Meng Y; Li J; Zhang Z; Zhang H
    Front Chem; 2021; 9():812331. PubMed ID: 34993179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction.
    López-Asensio R; Jiménez Gómez CP; García Sancho C; Moreno-Tost R; Cecilia JA; Maireles-Torres P
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30769888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confining Co-Based Nanocatalysts by Ultrathin Nanotubes for Efficient Transfer Hydrogenation of Biomass Derivatives.
    Shao YR; Zhao F; Wei ZC; Huo YF; Dai JJ; Hu TL
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26637-26649. PubMed ID: 37233726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Stereoselective Conversion of Biomass-Derived 4'-Methoxypropiophenone to
    Liu Y; Chen D; Li M; Zhang H; Li H
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Tannic Acid-Based Carbon-Supported Cobalt Catalyst for Transfer Hydrogenation of Biomass Derived Ethyl Levulinate.
    Wang M; Yao X; Chen Y; Lin B; Li N; Zhi K; Liu Q; Zhou H
    Front Chem; 2022; 10():964128. PubMed ID: 35898969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranyl(VI) Triflate as Catalyst for the Meerwein-Ponndorf-Verley Reaction.
    Kobylarski M; Monsigny L; Thuéry P; Berthet JC; Cantat T
    Inorg Chem; 2021 Nov; 60(21):16140-16148. PubMed ID: 34647730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isomorphic Insertion of Ce(III)/Ce(IV) Centers into Layered Double Hydroxide as a Heterogeneous Multifunctional Catalyst for Efficient Meerwein-Ponndorf-Verley Reduction.
    Varga G; Nguyen TT; Wang J; Tian D; Zhang R; Li L; Xu ZP
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11453-11466. PubMed ID: 38404195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.
    Song J; Zhou B; Zhou H; Wu L; Meng Q; Liu Z; Han B
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9399-403. PubMed ID: 26177726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions.
    Wang Z; Xie C; Li X; Nie J; Yang H; Zhang Z
    Chem Commun (Camb); 2022 Mar; 58(25):4067-4070. PubMed ID: 35262544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel and highly efficient Zr-containing catalyst supported by biomass-derived sodium carboxymethyl cellulose for hydrogenation of furfural.
    Hao J; Zhang Y; Zhang T; Zhou H; Liu Q; Zhi K; Li N; He R
    Front Chem; 2022; 10():966270. PubMed ID: 35936079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol over Mesoporous Zr-Containing Hybrids with 5-Sulfosalicylic Acid as a Ligand.
    Yang J; Guo H; Shen F
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient, Catalytic Meerwein-Ponndorf-Verley Reduction with a Novel Bidentate Aluminum Catalyst.
    Ooi T; Miura T; Maruoka K
    Angew Chem Int Ed Engl; 1998 Sep; 37(17):2347-2349. PubMed ID: 29710956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts.
    Antunes MM; Silva AF; Bernardino CD; Fernandes A; Ribeiro F; Valente AA
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A well-defined monomeric aluminum complex as an efficient and general catalyst in the Meerwein-Ponndorf-Verley reduction.
    McNerney B; Whittlesey B; Cordes DB; Krempner C
    Chemistry; 2014 Nov; 20(46):14959-64. PubMed ID: 25284749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction).
    Corma A; Domine ME; Nemeth L; Valencia S
    J Am Chem Soc; 2002 Apr; 124(13):3194-5. PubMed ID: 11916388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of Basic Catalysts in the Meerwein-Ponndorf-Verley Reaction of Benzaldehyde with Ethanol.
    Aramendía MA; Borau V; Jiménez C; Marinas JM; Ruiz JR; Urbano FJ
    J Colloid Interface Sci; 2001 Jun; 238(2):385-389. PubMed ID: 11374935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic scope of Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions: an application to reduction of allylic alcohols by a sequential process of isomerization/Meerwein-Ponndorf-Verley-type reduction.
    Kim JW; Koike T; Kotani M; Yamaguchi K; Mizuno N
    Chemistry; 2008; 14(13):4104-9. PubMed ID: 18338409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.