BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35493911)

  • 21. The displacement reaction mechanism of the CuV
    Yu X; Hu F; Cui F; Zhao J; Guan C; Zhu K
    Dalton Trans; 2020 Jan; 49(4):1048-1055. PubMed ID: 31833505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of N-doped carbon-coated MnO/ZnMn
    Huang T; Cheng M; Yuan Y; Kong L; Chang Z; Bu XH
    Dalton Trans; 2023 Oct; 52(38):13737-13744. PubMed ID: 37712291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Activation of Oxygen Vacancy-Rich Nitrogen-Doped Manganese Carbonate Microspheres for High-Performance Aqueous Zinc-Ion Batteries.
    Yang B; Li D; Wang S; Sun C; Wang N
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18476-18485. PubMed ID: 35420769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries.
    Ma D; Zhao H; Cao F; Zhao H; Li J; Wang L; Liu K
    Chem Sci; 2022 Feb; 13(8):2385-2390. PubMed ID: 35310488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides.
    Yang G; Wei T; Wang C
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35079-35089. PubMed ID: 30247019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries.
    Zhai XZ; Qu J; Hao SM; Jing YQ; Chang W; Wang J; Li W; Abdelkrim Y; Yuan H; Yu ZZ
    Nanomicro Lett; 2020 Feb; 12(1):56. PubMed ID: 34138296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Long-Cycling Aqueous Zinc-Ion Pouch Cell: NASICON-Type Material and Surface Modification.
    Zhang X; Chen H; Liu W; Xiao N; Zhang Q; Rui X; Huang S
    Chem Asian J; 2020 May; 15(9):1430-1435. PubMed ID: 32167677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability.
    Lee SH; Han J; Cho TW; Kim GH; Yoo YJ; Park J; Kim YJ; Lee EJ; Lee S; Mhin S; Park SY; Yoo J; Lee SH
    Nanoscale; 2023 Feb; 15(8):3737-3748. PubMed ID: 36744925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35837-35847. PubMed ID: 34297523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Reversible Zinc Storage Achieved in a Constitutionally Crystalline-Stable Mn(VO
    Ke J; Zhang Y; Zhang Y; Ye M; Zhang Z; Tang Y; Liu X; Chao Li C
    Chemistry; 2022 Sep; 28(54):e202201687. PubMed ID: 35790473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Layered Ca
    Sun T; Nian Q; Zheng S; Shi J; Tao Z
    Small; 2020 Apr; 16(17):e2000597. PubMed ID: 32249537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries.
    Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cathode materials for aqueous zinc-ion batteries: A mini review.
    Zhou T; Zhu L; Xie L; Han Q; Yang X; Chen L; Wang G; Cao X
    J Colloid Interface Sci; 2022 Jan; 605():828-850. PubMed ID: 34371427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flower-like W/WO
    Songmueang K; Zhang D; Cao J; Zhang X; Kheawhom S; Sriprachuabwong C; Tuantranont A; Wangyao P; Qin J
    Chem Commun (Camb); 2021 Aug; 57(61):7549-7552. PubMed ID: 34240089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial Engineering Coupled Valence Tuning of MoO
    Liu Y; Wang J; Zeng Y; Liu J; Liu X; Lu X
    Small; 2020 Mar; 16(11):e1907458. PubMed ID: 32068969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries.
    Ou L; Ou H; Qin M; Liu Z; Fang G; Cao X; Liang S
    ChemSusChem; 2022 Oct; 15(19):e202201184. PubMed ID: 35934677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chitosan-Assisted Fabrication of a Network C@V
    Liu C; Li R; Liu W; Shen G; Chen D
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37194-37200. PubMed ID: 34314171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Layered (Na,Mn)V
    Du M; Liu C; Zhang F; Dong W; Zhang X; Sang Y; Wang JJ; Guo YG; Liu H; Wang S
    Adv Sci (Weinh); 2020 Jul; 7(13):2000083. PubMed ID: 32670757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering oxygen vacancies and surface chemical reconstruction of MOF-derived hierarchical CoO/Ni
    Li Z; Jiao Q; He SA; He G; Cen Z; Yang F; Zou R; Xu K
    Dalton Trans; 2021 Dec; 50(47):17538-17548. PubMed ID: 34812456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.