BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35493959)

  • 1. A biomimetic skin phantom for characterizing wearable electrodes in the low-frequency regime.
    Goyal K; Borkholder DA; Day SW
    Sens Actuators A Phys; 2022 Jun; 340():. PubMed ID: 35493959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration.
    Goyal K; Borkholder DA; Day SW
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance assessment of dry electrodes for wearable long term cardiac rhythm monitoring: Skin-electrode impedance spectroscopy.
    Bosnjak A; Kennedy A; Linares P; Borges M; McLaughlin J; Escalona OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1861-1864. PubMed ID: 29060253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Conductivity and Reduced Settling Time of Carbon-Based Electrodes By Addition of Sea Salt for Wearable Application.
    Noh Y; Ye X; Murphy L; Eaton-Robb C; Dimitrov T; Choi WJ; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1291-1294. PubMed ID: 30440627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchtop Performance of Novel Mixed Ionic-Electronic Conductive Electrode Form Factors for Biopotential Recordings.
    Colachis M; Schlink BR; Colachis S; Shqau K; Huegen BL; Palmer K; Heintz A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793990
    [No Abstract]   [Full Text] [Related]  

  • 6. High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography.
    Li J; Ma Y; Huang D; Wang Z; Zhang Z; Ren Y; Hong M; Chen Y; Li T; Shi X; Cao L; Zhang J; Jiao B; Liu J; Sun H; Li Z
    Nanomicro Lett; 2022 Jun; 14(1):132. PubMed ID: 35699782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PDMS-based microneedle array electrode for long-term ECG recording.
    Wang R; Bai J; Zhu X; Li Z; Cheng L; Zhang G; Zhang W
    Biomed Microdevices; 2022 Aug; 24(3):27. PubMed ID: 35953589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Stratum Corneum Swelling for the Optimization of Electrode-Based Skin Hydration Sensors.
    Malnati C; Fehr D; Spano F; Bonmarin M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording.
    Yokus MA; Jur JS
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):423-30. PubMed ID: 26241969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Enabled Electrodes for Electrocardiogram Monitoring.
    Celik N; Manivannan N; Strudwick A; Balachandran W
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Wearable Flexible Dry Electrode Based on Cowhide for ECG Measurement.
    Huang Y; Song Y; Gou L; Zou Y
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33915714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Textile-Based Wearable Sensor for Skin Hydration Monitoring.
    Jang M; Kim HD; Koo HJ; So JH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin-Potential Variation Insensitive Dry Electrodes for ECG Recording.
    Pei W; Zhang H; Wang Y; Guo X; Xing X; Huang Y; Xie Y; Yang X; Chen H
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):463-470. PubMed ID: 27164569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Sensitive Porous PDMS-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications.
    Masihi S; Panahi M; Maddipatla D; Hanson AJ; Bose AK; Hajian S; Palaniappan V; Narakathu BB; Bazuin BJ; Atashbar MZ
    ACS Sens; 2021 Mar; 6(3):938-949. PubMed ID: 33728910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Parylene-Coated Microneedle Array Electrode for Wearable ECG Device.
    Satti AT; Park J; Park J; Kim H; Cho S
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wearable Hydration Sensor with Conformal Nanowire Electrodes.
    Yao S; Myers A; Malhotra A; Lin F; Bozkurt A; Muth JF; Zhu Y
    Adv Healthc Mater; 2017 Mar; 6(6):. PubMed ID: 28128888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Low Contact Impedance Medical Flexible Electrode Based on a Pyramid Array Micro-Structure.
    Wang S; Yan J; Zhu C; Yao J; Liu Q; Yang X
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Motion Interference-Insensitive Flexible Dry Electrode.
    Zhang H; Pei W; Chen Y; Guo X; Wu X; Yang X; Chen H
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1136-44. PubMed ID: 26441439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration Assessment Using the Bio-Impedance Analysis Method.
    AlDisi R; Bader Q; Bermak A
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.