These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35494339)

  • 41. Anisotropic lattice thermal conductivity in topological semimetal ZrGe
    Zhou Y; Liang AK; Zeng ZY; Chen XR; Geng HY
    J Phys Condens Matter; 2021 Jan; 33(13):. PubMed ID: 33401256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lone-Pair Electron-Driven Thermoelectrics at Room Temperature.
    Mukhopadhyay S; Reinecke TL
    J Phys Chem Lett; 2019 Jul; 10(14):4117-4122. PubMed ID: 31262182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb
    Dawahre L; Lu R; Djieutedjeu H; Lopez J; Bailey TP; Buchanan B; Yin Z; Uher C; Poudeu PFP
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44991-44997. PubMed ID: 32902948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals.
    Sun B; Niu S; Hermann RP; Moon J; Shulumba N; Page K; Zhao B; Thind AS; Mahalingam K; Milam-Guerrero J; Haiges R; Mecklenburg M; Melot BC; Jho YD; Howe BM; Mishra R; Alatas A; Winn B; Manley ME; Ravichandran J; Minnich AJ
    Nat Commun; 2020 Nov; 11(1):6039. PubMed ID: 33247101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP
    Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J
    Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unraveling High Thermal Conductivity with In-Plane Anisotropy Observed in Suspended SiP
    Dai X; Qiu C; Bi X; Sui C; Chen P; Qin F; Yuan H
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13980-13988. PubMed ID: 38446715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain-tunable lattice thermal conductivity of the Janus PtSTe monolayer.
    Pan L; Carrete J; Wang Z
    J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34571499
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lattice Thermal Transport in the Homogeneous Cage-Like Compounds Cu
    Yang D; Yang J; Quan X; Zhang B; Wang G; Lu X; Zhou X
    Chemphyschem; 2021 Dec; 22(24):2579-2584. PubMed ID: 34622539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyclodextrin Metal-Organic Frameworks and Their Applications.
    Roy I; Stoddart JF
    Acc Chem Res; 2021 Mar; 54(6):1440-1453. PubMed ID: 33523626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electronic Properties of Bimetallic Metal-Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity.
    Dolgopolova EA; Brandt AJ; Ejegbavwo OA; Duke AS; Maddumapatabandi TD; Galhenage RP; Larson BW; Reid OG; Ammal SC; Heyden A; Chandrashekhar M; Stavila V; Chen DA; Shustova NB
    J Am Chem Soc; 2017 Apr; 139(14):5201-5209. PubMed ID: 28316244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aspects of semiconductivity in soft, porous metal-organic framework crystals.
    Muschielok C; Oberhofer H
    J Chem Phys; 2019 Jul; 151(1):015102. PubMed ID: 31272160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phonon stability boundary and deep elastic strain engineering of lattice thermal conductivity.
    Shi Z; Tsymbalov E; Shi W; Barr A; Li Q; Li J; Chen XQ; Dao M; Suresh S; Li J
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2313840121. PubMed ID: 38354259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tunable lattice thermal conductivity of twisted bilayer MoS
    Mandal S; Maity I; Das A; Jain M; Maiti PK
    Phys Chem Chem Phys; 2022 Jun; 24(22):13860-13868. PubMed ID: 35621002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights.
    Lee KJ; Lee JH; Jeoung S; Moon HR
    Acc Chem Res; 2017 Nov; 50(11):2684-2692. PubMed ID: 28990760
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic effect of grain boundaries and phonon engineering in Sb substituted Bi
    Vijay V; Harish S; Archana J; Navaneethan M
    J Colloid Interface Sci; 2022 Apr; 612():97-110. PubMed ID: 34979414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Tunable Structural Family with Ultralow Thermal Conductivity: Copper-Deficient Cu
    Maji K; Lemoine P; Renaud A; Zhang B; Zhou X; Carnevali V; Candolfi C; Raveau B; Al Rahal Al Orabi R; Fornari M; Vaqueiro P; Pasturel M; Prestipino C; Guilmeau E
    J Am Chem Soc; 2022 Feb; 144(4):1846-1860. PubMed ID: 35040653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phonon-engineered extreme thermal conductivity materials.
    Qian X; Zhou J; Chen G
    Nat Mater; 2021 Sep; 20(9):1188-1202. PubMed ID: 33686278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.