These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 35494372)

  • 21. Removal of agricultural wastewater pollutants by integrating two waste materials, fish scales and neem leaves, as novel potential adsorbent.
    Preetham V; Vengala J
    Water Sci Technol; 2021 Nov; 84(10-11):2980-2996. PubMed ID: 34850708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals - A review.
    Garba ZN; Lawan I; Zhou W; Zhang M; Wang L; Yuan Z
    Sci Total Environ; 2020 May; 717():135070. PubMed ID: 31839314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of Ethiopian kaolin for the removal of basic yellow (BY 28) dye from aqueous solution as a potential adsorbent.
    Aragaw TA; Angerasa FT
    Heliyon; 2020 Sep; 6(9):e04975. PubMed ID: 32995640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and adsorption of malachite green dye from aqueous solution onto
    Ahmad Khan F; Dar BA; Farooqui M
    Int J Phytoremediation; 2023; 25(5):646-657. PubMed ID: 35862864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of polyaniline-based adsorbents for dye removal from water and wastewater-a review.
    Nasar A; Mashkoor F
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5333-5356. PubMed ID: 30612350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A critical review on the separation of heavy metal(loid)s from the contaminated water using various agricultural wastes.
    Younas F; Younas S; Bibi I; Farooqi ZUR; Hameed MA; Mohy-Ud-Din W; Shehzad MT; Hussain MM; Shakil Q; Shahid M; Niazi NK
    Int J Phytoremediation; 2024 Feb; 26(3):349-368. PubMed ID: 37559458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of low-cost adsorbents for dye removal--a review.
    Gupta VK; Suhas
    J Environ Manage; 2009 Jun; 90(8):2313-42. PubMed ID: 19264388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants.
    Selvasembian R; Gwenzi W; Chaukura N; Mthembu S
    J Hazard Mater; 2021 Sep; 417():125960. PubMed ID: 34229405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review.
    Rajendran S; Priya AK; Senthil Kumar P; Hoang TKA; Sekar K; Chong KY; Khoo KS; Ng HS; Show PL
    Chemosphere; 2022 Sep; 303(Pt 2):135146. PubMed ID: 35636612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Industrial waste-based adsorbents as a new trend for removal of water-borne emerging contaminants.
    Rangappa HS; Herath I; Lin C; Ch S
    Environ Pollut; 2024 Feb; 343():123140. PubMed ID: 38103712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of shell-based agricultural waste adsorbents for removing dyes: A review.
    Paul Nayagam JO; Prasanna K
    Chemosphere; 2022 Mar; 291(Pt 1):132737. PubMed ID: 34742768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review.
    Giannakoudakis DA; Hosseini-Bandegharaei A; Tsafrakidou P; Triantafyllidis KS; Kornaros M; Anastopoulos I
    J Environ Manage; 2018 Dec; 227():354-364. PubMed ID: 30199731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in conducting polymer-based magnetic nanosorbents for dyes and heavy metal removal: fabrication, applications, and perspective.
    Goswami MK; Srivastava A; Dohare RK; Tiwari AK; Srivastav A
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73031-73060. PubMed ID: 37195615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water.
    Syeda HI; Yap PS
    Sci Total Environ; 2022 Feb; 807(Pt 1):150606. PubMed ID: 34592292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.
    Alaei Shahmirzadi MA; Hosseini SS; Luo J; Ortiz I
    J Environ Manage; 2018 Jun; 215():324-344. PubMed ID: 29579726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment.
    Mo J; Yang Q; Zhang N; Zhang W; Zheng Y; Zhang Z
    J Environ Manage; 2018 Dec; 227():395-405. PubMed ID: 30212686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater.
    Ugwu EI; Agunwamba JC
    Environ Monit Assess; 2020 Mar; 192(4):240. PubMed ID: 32185514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cationic Polystyrene-Based Hydrogels as Efficient Adsorbents to Remove Methyl Orange and Fluorescein Dye Pollutants from Industrial Wastewater.
    Alfei S; Grasso F; Orlandi V; Russo E; Boggia R; Zuccari G
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.