BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35494382)

  • 1. Oxygen-enriched surface modification for improving the dispersion of iron oxide on a porous carbon surface and its application as carbon molecular sieves (CMS) for CO
    Mukti NIF; Ariyanto T; Sediawan WB; Prasetyo I
    RSC Adv; 2021 Nov; 11(58):36782-36791. PubMed ID: 35494382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Separation of CO
    Ariyanto T; Masruroh K; Pambayun GYS; Mukti NIF; Cahyono RB; Prasetya A; Prasetyo I
    ACS Omega; 2021 Jul; 6(29):19194-19201. PubMed ID: 34337257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous carbon supported calcium oxide for CO
    Jonnalagadda M; Ibrahim SM; Shair OHM; Mutyala S
    Environ Technol; 2022 Jan; 43(3):460-468. PubMed ID: 32619389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of modified carbon molecular sieve with iron oxides or choline chloride-based deep eutectic solvent for the separation of CO
    Mukti NIF; Ariyanto T; Sediawan WB; Prasetyo I
    RSC Adv; 2023 Jul; 13(33):23158-23168. PubMed ID: 37533783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of arsenic from aqueous solution by novel iron and iron-zirconium modified activated carbon derived from chemical carbonization of Tectona grandis sawdust: Isotherm, kinetic, thermodynamic and breakthrough curve modelling.
    Sahu N; Singh J; Koduru JR
    Environ Res; 2021 Sep; 200():111431. PubMed ID: 34081972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorbents with high efficiency for CO
    Pino L; Italiano C; Vita A; Fabiano C; Recupero V
    J Environ Sci (China); 2016 Oct; 48():138-150. PubMed ID: 27745659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, Characterization, and Application of Magnetic Fe-SBA-15 Mesoporous Silica Molecular Sieves.
    Huang H; Ji Y; Qiao Z; Zhao C; He J; Zhang H
    J Autom Methods Manag Chem; 2010; 2010():323509. PubMed ID: 21151665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons.
    Xing W; Liu C; Zhou Z; Zhou J; Wang G; Zhuo S; Xue Q; Song L; Yan Z
    Nanoscale Res Lett; 2014; 9(1):189. PubMed ID: 24872796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive adsorption of NO2 at ambient conditions on iron-containing polymer-based porous carbons.
    Bashkova S; Bandosz TJ
    ChemSusChem; 2011 Mar; 4(3):404-12. PubMed ID: 21290609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.
    Qiu W; Zhang K; Li FS; Zhang K; Koros WJ
    ChemSusChem; 2014 Apr; 7(4):1186-94. PubMed ID: 24677799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures.
    Furmaniak S; Kowalczyk P; Terzyk AP; Gauden PA; Harris PJ
    J Colloid Interface Sci; 2013 May; 397():144-53. PubMed ID: 23433521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process.
    Du Y; Dai M; Cao J; Peng C; Ali I; Naz I; Li J
    Chemosphere; 2020 Apr; 244():125522. PubMed ID: 31830643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Calcination Temperature and Chemical Composition of PAN-Derived Carbon Microfibers on N
    Ojeda-López R; Ramos-Sánchez G; García-Mendoza C; C S Azevedo D; Guzmán-Vargas A; Felipe C
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Fluorocarbon from Rice Husk for the Efficient Separation of Gases.
    Bakdash RS; Aljundi IH; Basheer C; Abdulazeez I; Al-Saadi AA
    Glob Chall; 2021 Jul; 5(7):2000124. PubMed ID: 34267928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane reactor.
    Kathiraser Y; Wang Z; Kawi S
    Environ Sci Technol; 2013 Dec; 47(24):14510-7. PubMed ID: 24274713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal-organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO
    Sarmadi R; Salimi M; Pirouzfar V
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40618-40632. PubMed ID: 32671703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelled Graphene Oxide-Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO
    Fam W; Mansouri J; Li H; Hou J; Chen V
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7389-7400. PubMed ID: 29393621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.