These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35494579)

  • 41. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method.
    Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X
    ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-Dependent Localized Ostwald Ripening.
    Duan W; Zhang P; Xiahou Y; Song Y; Bi C; Zhan J; Du W; Huang L; Möhwald H; Xia H
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23081-23093. PubMed ID: 29926731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile Synthesis of Methylsilsesquioxane Aerogels with Uniform Mesopores by Microwave Drying.
    Guo X; Shan J; Lei W; Ding R; Zhang Y; Yang H
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and structural characteristics of high surface area TiO
    Qingge F; Huidong C; Haiying L; Siying Q; Zheng L; Dachao M; Yuyang Y
    Nanotechnology; 2018 Feb; 29(7):075702. PubMed ID: 29239854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic Study of CuFe
    Gaumet AV; Caddeo F; Loche D; Corrias A; Casula MF; Falqui A; Casu A
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685121
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes.
    Starbird R; García-González CA; Smirnova I; Krautschneider WH; Bauhofer W
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():177-83. PubMed ID: 24582238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanocellulose Xerogels With High Porosities and Large Specific Surface Areas.
    Yamasaki S; Sakuma W; Yasui H; Daicho K; Saito T; Fujisawa S; Isogai A; Kanamori K
    Front Chem; 2019; 7():316. PubMed ID: 31134187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of processing parameters on preparation of carrageenan aerogel microparticles.
    Alnaief M; Obaidat R; Mashaqbeh H
    Carbohydr Polym; 2018 Jan; 180():264-275. PubMed ID: 29103505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels.
    Wang J; Ruan X; Qiu J; Liang H; Guo X; Yang H
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption.
    Parmar KR; Dora DTK; Pant KK; Roy S
    J Hazard Mater; 2019 Aug; 375():206-215. PubMed ID: 31071618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels.
    Groult S; Budtova T
    Carbohydr Polym; 2018 Sep; 196():73-81. PubMed ID: 29891326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical Surface Area Quantification, CO
    Chauhan P; Hiekel K; Diercks JS; Herranz J; Saveleva VA; Khavlyuk P; Eychmüller A; Schmidt TJ
    ACS Mater Au; 2022 May; 2(3):278-292. PubMed ID: 35578702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction.
    Sakuma W; Yamasaki S; Fujisawa S; Kodama T; Shiomi J; Kanamori K; Saito T
    ACS Nano; 2021 Jan; 15(1):1436-1444. PubMed ID: 33405895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw.
    Wang Y; Wu K; Xiao M; Riffat SB; Su Y; Jiang F
    Carbohydr Polym; 2018 Oct; 197():284-291. PubMed ID: 30007615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic Polymer Aerogels in Particulate Form.
    Paraskevopoulou P; Chriti D; Raptopoulos G; Anyfantis GC
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions.
    Shaheed N; Javanshir S; Esmkhani M; Dekamin MG; Naimi-Jamal MR
    Sci Rep; 2021 Sep; 11(1):18553. PubMed ID: 34535724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wet-Spun Superelastic Graphene Aerogel Millispheres with Group Effect.
    Zhao X; Yao W; Gao W; Chen H; Gao C
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28714230
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces.
    Wen D; Liu W; Haubold D; Zhu C; Oschatz M; Holzschuh M; Wolf A; Simon F; Kaskel S; Eychmüller A
    ACS Nano; 2016 Feb; 10(2):2559-67. PubMed ID: 26751502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.