These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35494716)
41. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Yang H; Zheng H; Duan Y; Xu T; Xie H; Du H; Si C Int J Biol Macromol; 2023 Dec; 253(Pt 3):126903. PubMed ID: 37714239 [TBL] [Abstract][Full Text] [Related]
42. Interconnected MXene/Graphene Network Constructed by Soft Template for Multi-Performance Improvement of Polymer Composites. Jin L; Cao W; Wang P; Song N; Ding P Nanomicro Lett; 2022 Jun; 14(1):133. PubMed ID: 35699778 [TBL] [Abstract][Full Text] [Related]
43. Reduction of Electrochemically Exfoliated Graphene Films for High-Performance Electromagnetic Interference Shielding. Mirkhani SA; Iqbal A; Kwon T; Chae A; Kim D; Kim H; Kim SJ; Kim MK; Koo CM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15827-15836. PubMed ID: 33779141 [TBL] [Abstract][Full Text] [Related]
44. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding. Alam FE; Yu J; Shen D; Dai W; Li H; Zeng X; Yao Y; Du S; Jiang N; Lin CT Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965967 [TBL] [Abstract][Full Text] [Related]
45. Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites. Kumar GS; Vishnupriya D; Joshi A; Datar S; Patro TU Phys Chem Chem Phys; 2015 Aug; 17(31):20347-60. PubMed ID: 26194165 [TBL] [Abstract][Full Text] [Related]
46. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. Wu Y; Wang Z; Liu X; Shen X; Zheng Q; Xue Q; Kim JK ACS Appl Mater Interfaces; 2017 Mar; 9(10):9059-9069. PubMed ID: 28224798 [TBL] [Abstract][Full Text] [Related]
47. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Mondal S; Ganguly S; Rahaman M; Aldalbahi A; Chaki TK; Khastgir D; Das NCh Phys Chem Chem Phys; 2016 Sep; 18(35):24591-9. PubMed ID: 27539886 [TBL] [Abstract][Full Text] [Related]
48. Polyvinylidene Fluoride Core-Shell Nanofiber Membranes with Highly Conductive Shells for Electromagnetic Interference Shielding. Lee S; Park J; Kim MC; Kim M; Park P; Yoon IJ; Nah J ACS Appl Mater Interfaces; 2021 Jun; 13(21):25428-25437. PubMed ID: 34014068 [TBL] [Abstract][Full Text] [Related]
49. Experiment and simulation of flexible CNT/SA/PDMS electromagnetic shielding composite. Pang J; Chen Y; Li J; Gong S; Lei X; Wu C; Zhu Z; Li Z Nanotechnology; 2022 Feb; 33(17):. PubMed ID: 35038684 [TBL] [Abstract][Full Text] [Related]
50. Constructing a Segregated Magnetic Graphene Network in Rubber Composites for Integrating Electromagnetic Interference Shielding Stability and Multi-Sensing Performance. Wang J; Liu B; Cheng Y; Ma Z; Zhan Y; Xia H Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641094 [TBL] [Abstract][Full Text] [Related]
51. Ultrahigh and Tunable Electromagnetic Interference Shielding Performance of PVDF Composite Induced by Nano-Micro Cellular Structure. Yang Y; Zeng S; Li X; Hu Z; Zheng J Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054643 [TBL] [Abstract][Full Text] [Related]
52. Ultrathin Biomimetic Polymeric Ti Liu R; Miao M; Li Y; Zhang J; Cao S; Feng X ACS Appl Mater Interfaces; 2018 Dec; 10(51):44787-44795. PubMed ID: 30516359 [TBL] [Abstract][Full Text] [Related]
53. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Cao W; Ma C; Tan S; Ma M; Wan P; Chen F Nanomicro Lett; 2019 Sep; 11(1):72. PubMed ID: 34138029 [TBL] [Abstract][Full Text] [Related]
54. Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding. Li J; Chen JL; Tang XH; Cai JH; Liu JH; Wang M J Colloid Interface Sci; 2020 Apr; 565():536-545. PubMed ID: 31982720 [TBL] [Abstract][Full Text] [Related]
55. Ultrasonication Influence on the Morphological Characteristics of Graphene Nanoplatelet Nanocomposites and Their Electrical and Electromagnetic Interference Shielding Behavior. Collado I; Jiménez-Suárez A; Vázquez-López A; Del Rosario G; Prolongo SG Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674988 [TBL] [Abstract][Full Text] [Related]
56. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Zhu X; Xu J; Qin F; Yan Z; Guo A; Kan C Nanoscale; 2020 Jul; 12(27):14589-14597. PubMed ID: 32614025 [TBL] [Abstract][Full Text] [Related]
57. Bio-Based Kang H; Luo S; Du H; Han L; Li D; Li L; Fang Q Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267802 [TBL] [Abstract][Full Text] [Related]
58. Ni@CNTs/Al Sang G; Wang C; Zhao Y; He G; Zhang Q; Yang M; Zhao S; Xu P; Xi X; Yang J ACS Appl Mater Interfaces; 2022 Jan; 14(3):4443-4455. PubMed ID: 35026118 [TBL] [Abstract][Full Text] [Related]
59. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Liu J; Zhang HB; Sun R; Liu Y; Liu Z; Zhou A; Yu ZZ Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28799671 [TBL] [Abstract][Full Text] [Related]