These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35494817)
1. Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach. Solarte Pabón O; Montenegro O; Torrente M; Rodríguez González A; Provencio M; Menasalvas E PeerJ Comput Sci; 2022; 8():e913. PubMed ID: 35494817 [TBL] [Abstract][Full Text] [Related]
2. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study. Rivera Zavala R; Martinez P JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027 [TBL] [Abstract][Full Text] [Related]
3. Negation recognition in clinical natural language processing using a combination of the NegEx algorithm and a convolutional neural network. Argüello-González G; Aquino-Esperanza J; Salvador D; Bretón-Romero R; Del Río-Bermudez C; Tello J; Menke S BMC Med Inform Decis Mak; 2023 Oct; 23(1):216. PubMed ID: 37833661 [TBL] [Abstract][Full Text] [Related]
4. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization. Rivera-Zavala RM; Martínez P BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703 [TBL] [Abstract][Full Text] [Related]
5. Biomedical negation scope detection with conditional random fields. Agarwal S; Yu H J Am Med Inform Assoc; 2010; 17(6):696-701. PubMed ID: 20962133 [TBL] [Abstract][Full Text] [Related]
6. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
7. Does BERT need domain adaptation for clinical negation detection? Lin C; Bethard S; Dligach D; Sadeque F; Savova G; Miller TA J Am Med Inform Assoc; 2020 Apr; 27(4):584-591. PubMed ID: 32044989 [TBL] [Abstract][Full Text] [Related]
8. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework. Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395 [TBL] [Abstract][Full Text] [Related]
9. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction. Fabregat H; Duque A; Martinez-Romo J; Araujo L J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608 [TBL] [Abstract][Full Text] [Related]
10. Adversarial active learning for the identification of medical concepts and annotation inconsistency. Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Approach for Negation and Speculation Detection for Automated Important Finding Flagging and Extraction in Radiology Report: Internal Validation and Technique Comparison Study. Weng KH; Liu CF; Chen CJ JMIR Med Inform; 2023 Apr; 11():e46348. PubMed ID: 37097731 [TBL] [Abstract][Full Text] [Related]
12. Neural negated entity recognition in Spanish electronic health records. Santiso S; Pérez A; Casillas A; Oronoz M J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847 [TBL] [Abstract][Full Text] [Related]
13. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
14. Data governance and Gensini score automatic calculation for coronary angiography with deep-learning-based natural language extraction. Li F; Jiang M; Xu H; Chen Y; Chen F; Nie W; Wang L Math Biosci Eng; 2024 Feb; 21(3):4085-4103. PubMed ID: 38549319 [TBL] [Abstract][Full Text] [Related]
16. Transformers for extracting breast cancer information from Spanish clinical narratives. Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566 [TBL] [Abstract][Full Text] [Related]
17. Comparing Different Methods for Named Entity Recognition in Portuguese Neurology Text. Lopes F; Teixeira C; Gonçalo Oliveira H J Med Syst; 2020 Feb; 44(4):77. PubMed ID: 32112285 [TBL] [Abstract][Full Text] [Related]
18. Detecting negation and scope in Chinese clinical notes using character and word embedding. Kang T; Zhang S; Xu N; Wen D; Zhang X; Lei J Comput Methods Programs Biomed; 2017 Mar; 140():53-59. PubMed ID: 28254090 [TBL] [Abstract][Full Text] [Related]
19. Negation and speculation processing: A study on cue-scope labelling and assertion classification in Spanish clinical text. Perez N; Cuadros M; Rigau G Artif Intell Med; 2023 Nov; 145():102682. PubMed ID: 37925211 [TBL] [Abstract][Full Text] [Related]
20. Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods. van Es B; Reteig LC; Tan SC; Schraagen M; Hemker MM; Arends SRS; Rios MAR; Haitjema S BMC Bioinformatics; 2023 Jan; 24(1):10. PubMed ID: 36624385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]