These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35495205)

  • 1. Design and fabrication of a nerve-stretching device for
    Sahar MSU; Barton M; Tansley G
    HardwareX; 2020 Apr; 7():e00093. PubMed ID: 35495205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological, immunohistochemical, and morphometric analysis of negative pressure-assisted in-vivo nerve stretch-growth.
    Sana Ullah Sahar M; Mettyas T; Shah M; Bindra R; Barton M
    Neurosci Lett; 2022 Jun; 782():136687. PubMed ID: 35597535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a 3D printed, motorized, uniaxial cell stretcher for microscopic and biochemical analysis of mechanotransduction.
    Al-Maslamani NA; Khilan AA; Horn HF
    Biol Open; 2021 Feb; 10(2):. PubMed ID: 33563607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel internal fixator device for peripheral nerve regeneration.
    Chuang TH; Wilson RE; Love JM; Fisher JP; Shah SB
    Tissue Eng Part C Methods; 2013 Jun; 19(6):427-37. PubMed ID: 23102114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting structural and inflammatory response after in vivo stretch injury in the rat median nerve via second harmonic generation.
    Gluck MJ; Vijayaraghavan S; Sinclair EB; Ashraf A; Hausman MR; Cagle PJ
    J Neurosci Methods; 2018 Jun; 303():68-80. PubMed ID: 29454014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretch of mammalian nerve in vitro: effect on compound action potentials.
    Ochs S; Pourmand R; Si K; Friedman RN
    J Peripher Nerv Syst; 2000 Dec; 5(4):227-35. PubMed ID: 11151983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Clinical effects of combined application of skin-stretching device and vacuum sealing drainage in repairing the diabetic foot wounds].
    Ji P; Zhang Y; Hu DH; Zhang Z; Li XQ; Tong L; Han JT; Tao K
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1035-1039. PubMed ID: 33238686
    [No Abstract]   [Full Text] [Related]  

  • 9. The CaT stretcher: An open-source system for delivering uniaxial strain to cells and tissues (CaT).
    Wang Y; Singer R; Liu X; Inman SJ; Cao Q; Zhou Q; Noble A; Li L; Arizpe Tafoya AV; Babi M; Ask K; Kolb MR; Ramsay S; Geng F; Zhang B; Shargall Y; Moran-Mirabal JM; Dabaghi M; Hirota JA
    Front Bioeng Biotechnol; 2022; 10():959335. PubMed ID: 36329705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traumatic neuroma in continuity injury model in rodents: a preliminary report.
    Alant J; Kemp S; Webb A; Midha R
    Evid Based Spine Care J; 2010 Aug; 1(2):52-5. PubMed ID: 23637668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function.
    Blits B; Dijkhuizen PA; Boer GJ; Verhaagen J
    Exp Neurol; 2000 Jul; 164(1):25-37. PubMed ID: 10877912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Two-Pore-Domain Potassium Channels by Mechanical Stretch Instantaneously Modulates Action Potential Transmission in Mouse Sciatic Nerves.
    Liu J; Ganeshbabu N; Shalaby N; Chen L; Guo T; Feng B
    ACS Chem Neurosci; 2021 Oct; 12(19):3558-3566. PubMed ID: 34423641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic multi-arm radial lens stretcher: a robotic analog of the ciliary body.
    Reilly MA; Hamilton PD; Ravi N
    Exp Eye Res; 2008 Jan; 86(1):157-64. PubMed ID: 18068804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed biaxial stretcher compatible with live fluorescence microscopy.
    Shiwarski DJ; Tashman JW; Eaton AF; Apodaca G; Feinberg AW
    HardwareX; 2020 Apr; 7():. PubMed ID: 35097243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of tensile loading for the tissue engineering of nerves.
    Bueno FR; Shah SB
    Tissue Eng Part B Rev; 2008 Sep; 14(3):219-33. PubMed ID: 18673080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level.
    Yang T; Bragheri F; Minzioni P
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain, stress and stretch of peripheral nerve. Rabbit experiments in vitro and in vivo.
    Kwan MK; Wall EJ; Massie J; Garfin SR
    Acta Orthop Scand; 1992 Jun; 63(3):267-72. PubMed ID: 1609588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo acceleration of skin growth using a servo-controlled stretching device.
    Chin MS; Ogawa R; Lancerotto L; Pietramaggiori G; Schomacker KT; Mathews JC; Scherer SS; Van Duyn P; Prsa MJ; Ottensmeyer MP; Veves A; Orgill DP
    Tissue Eng Part C Methods; 2010 Jun; 16(3):397-405. PubMed ID: 19601702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.