These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35495207)
1. microUSV: A low-cost platform for indoor marine swarm robotics research. Gregory C; Vardy A HardwareX; 2020 Apr; 7():e00105. PubMed ID: 35495207 [TBL] [Abstract][Full Text] [Related]
2. An Unmanned Surface Vehicle (USV): Development of an Autonomous Boat with a Sensor Integration System for Bathymetric Surveys. Sotelo-Torres F; Alvarez LV; Roberts RC Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177623 [TBL] [Abstract][Full Text] [Related]
3. Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle. Cho HJ; Jeong SK; Ji DH; Tran NH; Vu MT; Choi HS Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380718 [TBL] [Abstract][Full Text] [Related]
4. Coordinated Sampling of Microorganisms Over Freshwater and Saltwater Environments Using an Unmanned Surface Vehicle (USV) and a Small Unmanned Aircraft System (sUAS). Powers CW; Hanlon R; Grothe H; Prussin AJ; Marr LC; Schmale DG Front Microbiol; 2018; 9():1668. PubMed ID: 30158904 [TBL] [Abstract][Full Text] [Related]
5. Design and Implementation of a Low-Cost Intelligent Unmanned Surface Vehicle. Chaysri P; Spatharis C; Vlachos K; Blekas K Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794108 [TBL] [Abstract][Full Text] [Related]
6. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions. Jorge VAM; Granada R; Maidana RG; Jurak DA; Heck G; Negreiros APF; Dos Santos DH; Gonçalves LMG; Amory AM Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744069 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion. Du H; Wang W; Xu C; Xiao R; Sun C Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050470 [TBL] [Abstract][Full Text] [Related]
13. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Hocraffer A; Nam CS Appl Ergon; 2017 Jan; 58():66-80. PubMed ID: 27633199 [TBL] [Abstract][Full Text] [Related]
14. Design and Experiments of a Water Color Remote Sensing-Oriented Unmanned Surface Vehicle. Li Y; Tian L; Li W; Li J; Wei A; Li S; Tong R Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290624 [TBL] [Abstract][Full Text] [Related]
15. Control System for Vertical Take-Off and Landing Vehicle's Adaptive Landing Based on Multi-Sensor Data Fusion. Tang H; Zhang D; Gan Z Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784693 [TBL] [Abstract][Full Text] [Related]
16. Greedy Mechanism Based Particle Swarm Optimization for Path Planning Problem of an Unmanned Surface Vehicle. Xin J; Zhong J; Li S; Sheng J; Cui Y Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652911 [TBL] [Abstract][Full Text] [Related]
17. Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy. Sa I; Hrabar S; Corke P Sensors (Basel); 2015 Sep; 15(9):22003-48. PubMed ID: 26340631 [TBL] [Abstract][Full Text] [Related]
18. A Two Teraflop Swarm. Jones S; Studley M; Hauert S; Winfield AFT Front Robot AI; 2018; 5():11. PubMed ID: 33500898 [TBL] [Abstract][Full Text] [Related]
19. Multi-objective path planning for unmanned surface vehicle with currents effects. Ma Y; Hu M; Yan X ISA Trans; 2018 Apr; 75():137-156. PubMed ID: 29455891 [TBL] [Abstract][Full Text] [Related]
20. Prototyping a low-cost open-source autonomous unmanned surface vehicle for real-time water quality monitoring and visualization. Ryu JH HardwareX; 2022 Oct; 12():e00369. PubMed ID: 36275398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]