BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35495428)

  • 1. A simple and cost-effective approach to fabricate tunable length polymeric microneedle patches for controllable transdermal drug delivery.
    Chen Y; Xian Y; Carrier AJ; Youden B; Servos M; Cui S; Luan T; Lin S; Zhang X
    RSC Adv; 2020 Apr; 10(26):15541-15546. PubMed ID: 35495428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency.
    Chi Y; Zheng Y; Pan X; Huang Y; Kang Y; Zhong W; Xu K
    Acta Biomater; 2024 Jan; 174():127-140. PubMed ID: 38042262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon polymerization based reusable master template to fabricate polymer microneedles for drug delivery.
    Pillai MM; Ajesh S; Tayalia P
    MethodsX; 2023; 10():102025. PubMed ID: 36793674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery.
    Lee IC; He JS; Tsai MT; Lin KC
    J Mater Chem B; 2015 Jan; 3(2):276-285. PubMed ID: 32261948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of polymeric microneedle arrays for transdermal drug delivery.
    Demir YK; Akan Z; Kerimoglu O
    PLoS One; 2013; 8(10):e77289. PubMed ID: 24194879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane filtration: An unconventional route for fabrication of the flexible and dissolvable, polymer microneedle patches.
    Juang YJ; Deng YL; Lee IC
    Biomicrofluidics; 2016 Jul; 10(4):044108. PubMed ID: 27570573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles.
    Chi Y; Huang Y; Kang Y; Dai G; Liu Z; Xu K; Zhong W
    Eur J Pharm Sci; 2022 Jan; 168():106075. PubMed ID: 34813921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Evaluation of Transdermal Microneedles for a Recombinant Human Keratinocyte Growth Factor.
    Chellathurai MS; Ling VWT; Palanirajan VK
    Turk J Pharm Sci; 2021 Feb; 18(1):96-103. PubMed ID: 33634684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rise of Polymeric Microneedles: Recent Developments, Advances, Challenges, and Applications with Regard to Transdermal Drug Delivery.
    Gera AK; Burra RK
    J Funct Biomater; 2022 Jun; 13(2):. PubMed ID: 35735936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications.
    Aldawood FK; Parupelli SK; Andar A; Desai S
    Pharmaceutics; 2024 Feb; 16(2):. PubMed ID: 38399291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Rapidly Separable Microneedles for Transdermal Delivery of Metformin on Diabetic Rats.
    Liu T; Jiang G; Song G; Sun Y; Zhang X; Zeng Z
    J Pharm Sci; 2021 Aug; 110(8):3004-3010. PubMed ID: 33878323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of Dissolving Microneedles with Nanosuspension and Co-Grinding for Transdermal Delivery of Ketoprofen.
    Ramadon D; Ulayya F; Qur'ani AS; Iskandarsyah I; Harahap Y; Anjani QK; Aileen V; Hartrianti P; Donnelly RF
    Pharmaceuticals (Basel); 2023 Mar; 16(3):. PubMed ID: 36986478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneedles with Tunable Dissolution Rate.
    Kathuria H; Lim D; Cai J; Chung BG; Kang L
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5061-5068. PubMed ID: 33455299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and testing of polymer microneedles for transdermal drug delivery.
    Ebrahiminejad V; Faraji Rad Z; Prewett PD; Davies GJ
    Beilstein J Nanotechnol; 2022; 13():629-640. PubMed ID: 35874440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and Evaluation of Niosomal Alendronate Sodium Encapsulated in Polymeric Microneedles: In Vitro Studies, Stability Study and Cytotoxicity Study.
    Zaid Alkilani A; Abu-Zour H; Alshishani A; Abu-Huwaij R; Basheer HA; Abo-Zour H
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric microneedles for controlled transdermal drug delivery.
    Singh P; Carrier A; Chen Y; Lin S; Wang J; Cui S; Zhang X
    J Control Release; 2019 Dec; 315():97-113. PubMed ID: 31644938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Polylactic Acid and Bovine Serum Albumin-layered-coated Chitosan Microneedles Using Novel Bees Wax Mould.
    Badhe RV; Adkine D; Godse A
    Turk J Pharm Sci; 2021 Jun; 18(3):367-375. PubMed ID: 34157828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient delivery of nanoparticles to deep skin layers using dissolvable microneedles with an extended-length design.
    Su LC; Chen MC
    J Mater Chem B; 2017 May; 5(18):3355-3363. PubMed ID: 32264401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery.
    Hwa KY; Chang VHS; Cheng YY; Wang YD; Jan PS; Subramani B; Wu MJ; Wang BK
    Biomed Microdevices; 2017 Sep; 19(4):84. PubMed ID: 28929244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.