These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35495517)

  • 1. Random laser oscillation from an organic fluorescent dye loaded inside a porous zirconia medium.
    Sakurayama Y; Onodera T; Araki Y; Wada T; Oikawa H
    RSC Adv; 2021 Sep; 11(51):32030-32037. PubMed ID: 35495517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO nanorods as scatterers for random lasing emission from dye doped polymer films.
    Zhang D; Wang Y; Ma D
    J Nanosci Nanotechnol; 2009 May; 9(5):3166-70. PubMed ID: 19452985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from amplified spontaneous emission to laser action in strongly scattering media.
    Cao H; Xu JY; Chang S; Ho ST
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1985-9. PubMed ID: 11046486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lasing in active, sub-mean-free path-sized systems with dense, random, weak scatterers.
    Prasad BR; Ramachandran H; Sood AK; Subramanian CK; Kumar N
    Appl Opt; 1997 Oct; 36(30):7718-24. PubMed ID: 18264291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer.
    Shi LT; Jin F; Zheng ML; Dong XZ; Chen WQ; Zhao ZS; Duan XM
    Phys Chem Chem Phys; 2016 Feb; 18(7):5306-15. PubMed ID: 26817423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lasing in a random amplifying medium: spatiotemporal characteristics and nonadiabatic atomic dynamics.
    Florescu L; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036607. PubMed ID: 15524656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochromic Composite for Random Lasing Based on Porous Polypropylene Infiltrated with Azobenzene-Containing Liquid Crystalline Mixture.
    Lisinetskii V; Ryabchun A; Bobrovsky A; Schrader S
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26595-602. PubMed ID: 26565667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser velocimetry with fluorescent dye-doped polystyrene microspheres.
    Lowe KT; Maisto P; Byun G; Simpson RL; Verkamp M; Danehy PM; Tiemsin PI; Wohl CJ
    Opt Lett; 2013 Apr; 38(8):1197-9. PubMed ID: 23595429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple scattering efficiency and optical extinction.
    Swanson NL; Billard DB
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4518-22. PubMed ID: 11088251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium.
    Florescu L; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046603. PubMed ID: 15169114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional unidirectional laser action enhanced by dye confined in nanoparticle scatters.
    Enciso E; Costela A; Garcia-Moreno I; Martin V; Sastre R
    Langmuir; 2010 May; 26(9):6154-7. PubMed ID: 20387817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random anti-lasing through coherent perfect absorption in a disordered medium.
    Pichler K; Kühmayer M; Böhm J; Brandstötter A; Ambichl P; Kuhl U; Rotter S
    Nature; 2019 Mar; 567(7748):351-355. PubMed ID: 30833737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization.
    Milner V; Genack AZ
    Phys Rev Lett; 2005 Feb; 94(7):073901. PubMed ID: 15783816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1Low threshold random lasing in dye-doped silica nano powders.
    García-Revilla S; Zayac M; Balda R; Al-Saleh M; Levy D; Fernández J
    Opt Express; 2009 Jul; 17(15):13202-15. PubMed ID: 19654726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplifying volume in scattering media.
    van Soest G; Tomita M; Lagendijk A
    Opt Lett; 1999 Mar; 24(5):306-8. PubMed ID: 18071488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random lasing in freely suspended dye-doped nematic liquid crystals.
    Ferjani S; Barna V; De Luca A; Versace C; Strangi G
    Opt Lett; 2008 Mar; 33(6):557-9. PubMed ID: 18347708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and Time-Delayed Lasing during Single Laser Pulse Excitation of a Pendant mm-Sized Dye Droplet.
    Boni M; Andrei IR; Pascu ML; Staicu A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible random lasers with tunable lasing emissions.
    Lee YJ; Chou CY; Yang ZP; Nguyen TBH; Yao YC; Yeh TW; Tsai MT; Kuo HC
    Nanoscale; 2018 Jun; 10(22):10403-10411. PubMed ID: 29671442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study on the scattering property of porous polymer structures via supercritical CO
    Yu S; Yu J; Chen J; Ding X; Li J; Rao L; Tang Y; Li Z
    Appl Opt; 2020 May; 59(14):4533-4541. PubMed ID: 32400438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.