These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35495517)

  • 41. The effect of deformation of absorbing scatterers on Mie-type signatures in infrared microspectroscopy.
    Brandsrud MA; Blümel R; Solheim JH; Kohler A
    Sci Rep; 2021 Feb; 11(1):4675. PubMed ID: 33633244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescence depolarization in a scattering medium: effect of size parameter of a scatterer.
    Ghosh N; Majumder SK; Gupta PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026608. PubMed ID: 11863679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic nonlinear effect on lasing in a random medium.
    Liu B; Yamilov A; Ling Y; Xu JY; Cao H
    Phys Rev Lett; 2003 Aug; 91(6):063903. PubMed ID: 12935075
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Random Lasing via Plasmon-Induced Cavitation of Microbubbles.
    Sato R; Henzie J; Zhang B; Ishii S; Murai S; Takazawa K; Takeda Y
    Nano Lett; 2021 Jul; 21(14):6064-6070. PubMed ID: 34240608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-resonator, stable dual-longitudinal-mode optofluidic microcavity laser based on a hollow-core microstructured optical fiber.
    Shi H; He J; Guo H; Liu X; Wang Z; Liu YG
    Opt Express; 2021 Mar; 29(7):10077-10088. PubMed ID: 33820142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Random laser based method for direct measurement of scattering properties.
    Tommasi F; Ignesti E; Fini L; Martelli F; Cavalieri S
    Opt Express; 2018 Oct; 26(21):27615-27627. PubMed ID: 30469824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robust and Flexible Random Lasers Using Perovskite Quantum Dots Coated Nickel Foam for Speckle-Free Laser Imaging.
    Gao W; Wang T; Xu J; Zeng P; Zhang W; Yao Y; Chen C; Li M; Yu SF
    Small; 2021 Oct; 17(39):e2103065. PubMed ID: 34410038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-Threshold and High Intensity Random Lasing Enhanced by MnCl₂.
    Shang Z; Yang M; Deng L
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Narrow-band random Raman lasing from Rhodamine 6G assisted by cascaded stimulated Raman scattering effect.
    Hosseini MS; Yazdani E; Sajad B
    Sci Rep; 2021 Nov; 11(1):21747. PubMed ID: 34741105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media.
    Sha WL; Liu CH; Alfano RR
    Opt Lett; 1994 Dec; 19(23):1922-4. PubMed ID: 19855696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signatures of periodicity and randomness in the angular emission profile of a 2-D on-average periodic optofluidic random laser.
    Sarkar A; Shivakiran Bhaktha BN
    Opt Lett; 2015 Nov; 40(21):4951-4. PubMed ID: 26512491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Random Lasing at Localization Transition in a Colloidal Suspension (TiO
    Jiménez-Villar E; da Silva IF; Mestre V; Wetter NU; Lopez C; de Oliveira PC; Faustino WM; de Sá GF
    ACS Omega; 2017 Jun; 2(6):2415-2421. PubMed ID: 31457590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light-scattering gating and characterization of plasma microparticles.
    Konokhova AI; Chernova DN; Strokotov DI; Karpenko AA; Chernyshev AV; Maltsev VP; Yurkin MA
    J Biomed Opt; 2016 Nov; 21(11):115003. PubMed ID: 27893088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological laser action.
    Wang L; Liu D; He N; Jacques SL; Thomsen SL
    Appl Opt; 1996 Apr; 35(10):1775-9. PubMed ID: 21085301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Platinum-scatterer-based random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes.
    Wang J; Zhang Y; Cao M; Song X; Che Y; Zhang H; Zhang H; Yao J
    Appl Opt; 2016 Jul; 55(21):5702-6. PubMed ID: 27463926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Speckle patterning of a pumping laser light as a limiting factor for stimulated fluorescence emission in dense random media.
    Zimnyakov DA; Volchkov SS; Kochkurov LA; Kochubey VI; Melnikov AG; Melnikov GV
    Opt Express; 2021 Jan; 29(2):2309-2331. PubMed ID: 33726429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Random lasing in ballistic and diffusiveregimes for macroporous silica-based systems with tunable scattering strength.
    Meng X; Fujita K; Murai S; Konishi J; Mano M; Tanaka K
    Opt Express; 2010 Jun; 18(12):12153-60. PubMed ID: 20588338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Random lasing and weak localization of light in dye-doped nematic liquid crystals.
    Strangi G; Ferjani S; Barna V; De Luca A; Versace C; Scaramuzza N; Bartolino R
    Opt Express; 2006 Aug; 14(17):7737-44. PubMed ID: 19529143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional coherent random laser in photonic crystal fiber with dye-doped nematic liquid crystal.
    Nagai Y; Shao-Chieh C; Kajikawa K
    Appl Opt; 2017 Nov; 56(32):8969-8972. PubMed ID: 29131184
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing.
    Ismail WZW; Dawes JM
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.