These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35495549)

  • 1. Kidney microphysiological models for nephrotoxicity assessment.
    Mahadeo A; Yeung CK; Himmelfarb J; Kelly EJ
    Curr Opin Toxicol; 2022 Jun; 30():. PubMed ID: 35495549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kidney Organoid and Microphysiological Kidney Chip Models to Accelerate Drug Development and Reduce Animal Testing.
    Chen WY; Evangelista EA; Yang J; Kelly EJ; Yeung CK
    Front Pharmacol; 2021; 12():695920. PubMed ID: 34381363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A glomerulus and proximal tubule microphysiological system simulating renal filtration, reabsorption, secretion, and toxicity.
    Zhang SY; Mahler GJ
    Lab Chip; 2023 Jan; 23(2):272-284. PubMed ID: 36514972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplifying the impact of kidney microphysiological systems: predicting renal drug clearance using mechanistic modelling based on reconstructed drug secretion.
    Caetano-Pinto P; Nordell P; Nieskens T; Haughan K; Fenner KS; Stahl SH
    ALTEX; 2023; 40(3):408-424. PubMed ID: 36343109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling Renal Filtration and Reabsorption Processes in a Human Glomerulus and Proximal Tubule Microphysiological System.
    Zhang SY; Mahler GJ
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kidney-on-a-Chip: A New Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity.
    Lee J; Kim S
    Curr Drug Metab; 2018; 19(7):577-583. PubMed ID: 29521220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS).
    Ueno R; Kuninori M; Sumi T; Sadeghian RB; Takata Y; Iguchi A; Tsuda M; Yamashita F; Ichikawa K; Yokokawa R
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation.
    Rubiano A; Indapurkar A; Yokosawa R; Miedzik A; Rosenzweig B; Arefin A; Moulin CM; Dame K; Hartman N; Volpe DA; Matta MK; Hughes DJ; Strauss DG; Kostrzewski T; Ribeiro AJS
    Clin Transl Sci; 2021 May; 14(3):1049-1061. PubMed ID: 33382907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies.
    Phillips JA; Grandhi TSP; Davis M; Gautier JC; Hariparsad N; Keller D; Sura R; Van Vleet TR
    Lab Chip; 2020 Feb; 20(3):468-476. PubMed ID: 31989145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests.
    Kimura H; Nakamura H; Goto T; Uchida W; Uozumi T; Nishizawa D; Shinha K; Sakagami J; Doi K
    Lab Chip; 2024 Jan; 24(3):408-421. PubMed ID: 38131210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zoledronic acid and ibandronate-induced nephrotoxicity in 2D and 3D proximal tubule cells derived from human and rat.
    Valencia LJ; Tseng M; Chu ML; Yu L; Adedeji AO; Kiyota T
    Toxicol Sci; 2024 Feb; 198(1):86-100. PubMed ID: 38059598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microphysiological Systems: A Pathologist's Perspective.
    Sura R; Van Vleet T; Berridge BR
    Vet Pathol; 2020 May; 57(3):358-368. PubMed ID: 32180532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in developing microphysiological systems for biological product assessment.
    Mansouri M; Lam J; Sung KE
    Lab Chip; 2024 Feb; 24(5):1293-1306. PubMed ID: 38230512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nephron model for study of drug-induced acute kidney injury and assessment of drug-induced nephrotoxicity.
    Qu Y; An F; Luo Y; Lu Y; Liu T; Zhao W; Lin B
    Biomaterials; 2018 Feb; 155():41-53. PubMed ID: 29169037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microphysiological systems for human aging research.
    Park S; Laskow TC; Chen J; Guha P; Dawn B; Kim DH
    Aging Cell; 2024 Mar; 23(3):e14070. PubMed ID: 38180277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS).
    Malik M; Yang Y; Fathi P; Mahler GJ; Esch MB
    Front Cell Dev Biol; 2021; 9():721338. PubMed ID: 34568333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling immunity in microphysiological systems.
    Kwee BJ; Li X; Nguyen XX; Campagna C; Lam J; Sung KE
    Exp Biol Med (Maywood); 2023 Nov; 248(22):2001-2019. PubMed ID: 38166397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Formation of Microgel Array Via Patterned Electrospun Nanofibers Promotes 3D Cell Culture and Drug Testing in a Microphysiological System.
    Liang M; Lei F; Liu Y; Lan D; Huang H; Zhang G; Feng Q; Cao X; Dong H
    ACS Appl Bio Mater; 2021 Aug; 4(8):6209-6218. PubMed ID: 35006864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications.
    Fabre K; Berridge B; Proctor WR; Ralston S; Will Y; Baran SW; Yoder G; Van Vleet TR
    Lab Chip; 2020 Mar; 20(6):1049-1057. PubMed ID: 32073020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microphysiological Systems to Assess Nonclinical Toxicity.
    Van Ness KP; Chang SY; Weber EJ; Zumpano D; Eaton DL; Kelly EJ
    Curr Protoc Toxicol; 2017 Aug; 73():14.18.1-14.18.28. PubMed ID: 28777442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.