BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35495882)

  • 1. Classification and Segmentation Algorithm in Benign and Malignant Pulmonary Nodules under Different CT Reconstruction.
    Lu Z; Long F; He X
    Comput Math Methods Med; 2022; 2022():3490463. PubMed ID: 35495882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A deep learning-based lung nodule density classification and segmentation method and its effectiveness under different CT reconstruction algorithms].
    Meng XL; Xing ZJ; Lu S
    Zhonghua Yi Xue Za Zhi; 2021 Feb; 101(7):476-480. PubMed ID: 33631891
    [No Abstract]   [Full Text] [Related]  

  • 3. Applying a CT texture analysis model trained with deep-learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis.
    Wang Q; Xu S; Zhang G; Zhang X; Gu J; Yang S; Zeng M; Zhang Z
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13759. PubMed ID: 35998185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of CT Postprocessing Reconstruction Technique in Differential Diagnosis of Benign and Malignant Solitary Pulmonary Nodules and Analysis of Risk Factors.
    Chen X; Xu B
    Comput Math Methods Med; 2022; 2022():9739047. PubMed ID: 35983523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung nodule pre-diagnosis and insertion path planning for chest CT images.
    Xie RL; Wang Y; Zhao YN; Zhang J; Chen GB; Fei J; Fu Z
    BMC Med Imaging; 2023 Feb; 23(1):22. PubMed ID: 36737717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D SAACNet with GBM for the classification of benign and malignant lung nodules.
    Guo Z; Yang J; Zhao L; Yuan J; Yu H
    Comput Biol Med; 2023 Feb; 153():106532. PubMed ID: 36623436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of U-Net++ pulmonary nodule intelligent analysis model based on feature weighted aggregation.
    Yang D; Du J; Liu K; Sui Y; Wang J; Gai X
    Technol Health Care; 2023; 31(S1):477-486. PubMed ID: 37066943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination.
    Zhang C; Li J; Huang J; Wu S
    J Healthc Eng; 2021; 2021():3417285. PubMed ID: 34721823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of different reconstruction parameters on CT volumetric measurement of pulmonary nodules].
    Yang R; Yu T; Wang Y; Wang Q
    Zhongguo Fei Ai Za Zhi; 2012 Feb; 15(2):72-7. PubMed ID: 22336233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of benign and malignant lung nodules from CT images based on hybrid features.
    Zhang G; Yang Z; Gong L; Jiang S; Wang L
    Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of malignancy of pulmonary nodules at CT scans: Effect of computer-aided diagnosis on diagnostic performance of radiologists.
    Liu J; Zhao L; Han X; Ji H; Liu L; He W
    Asia Pac J Clin Oncol; 2021 Jun; 17(3):216-221. PubMed ID: 32757455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Modal Feature Fusion-Based Multi-Branch Classification Network for Pulmonary Nodule Malignancy Suspiciousness Diagnosis.
    Yuan H; Wu Y; Dai M
    J Digit Imaging; 2023 Apr; 36(2):617-626. PubMed ID: 36478311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of lung nodules segmentation and recognition algorithm based on deep learning.
    Yu H; Li J; Zhang L; Cao Y; Yu X; Sun J
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):314. PubMed ID: 34749636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D gray density coding feature for benign-malignant pulmonary nodule classification on chest CT.
    Zheng B; Yang D; Zhu Y; Liu Y; Hu J; Bai C
    Med Phys; 2021 Dec; 48(12):7826-7836. PubMed ID: 34655238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images.
    Dhara AK; Mukhopadhyay S; Dutta A; Garg M; Khandelwal N
    J Digit Imaging; 2016 Aug; 29(4):466-75. PubMed ID: 26738871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT.
    Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A
    Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative analysis of computed tomography texture features between pulmonary inflammatory nodules and lung cancer].
    E LN; Zhang N; Wang RH; Wu ZF
    Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):847-850. PubMed ID: 30481937
    [No Abstract]   [Full Text] [Related]  

  • 19. Prospective intra-individual comparison of standard dose versus reduced-dose thoracic CT using hybrid and pure iterative reconstruction in a follow-up cohort of pulmonary nodules-Effect of detectability of pulmonary nodules with lowering dose based on nodule size, type and body mass index.
    Vardhanabhuti V; Pang CL; Tenant S; Taylor J; Hyde C; Roobottom C
    Eur J Radiol; 2017 Jun; 91():130-141. PubMed ID: 28629559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pilot study using low-dose Spectral CT and ASIR (Adaptive Statistical Iterative Reconstruction) algorithm to diagnose solitary pulmonary nodules.
    Xiao H; Liu Y; Tan H; Liang P; Wang B; Su L; Wang S; Gao J
    BMC Med Imaging; 2015 Nov; 15():54. PubMed ID: 26576676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.