These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35495987)

  • 61. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.
    Ozturk AM; Sozbilen MC; Sevgili E; Dagci T; Özyalcin H; Armagan G
    Injury; 2018 Jun; 49(6):1038-1045. PubMed ID: 29602490
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold with incorporated neurotrophin-3 for spinal cord injury repair.
    Sha Q; Wang Y; Zhu Z; Wang H; Qiu H; Niu W; Li X; Qian J
    Acta Biomater; 2023 Sep; 167():219-233. PubMed ID: 37257575
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Allotransplantation of adult spinal cord tissues after complete transected spinal cord injury: Long-term survival and functional recovery in canines.
    Shen H; Wu S; Chen X; Xu B; Ma D; Zhao Y; Zhuang Y; Chen B; Hou X; Li J; Cao Y; Fu X; Tan J; Yin W; Li J; Meng L; Shi Y; Xiao Z; Jiang X; Dai J
    Sci China Life Sci; 2020 Dec; 63(12):1879-1886. PubMed ID: 32382980
    [TBL] [Abstract][Full Text] [Related]  

  • 64. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury.
    Kang CE; Baumann MD; Tator CH; Shoichet MS
    Cells Tissues Organs; 2013; 197(1):55-63. PubMed ID: 22796886
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Injectable Nanoreinforced Shape-Memory Hydrogel System for Regenerating Spinal Cord Tissue from Traumatic Injury.
    Wang C; Yue H; Feng Q; Xu B; Bian L; Shi P
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29299-29307. PubMed ID: 30091362
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury.
    Wang YC; Wu YT; Huang HY; Lin HI; Lo LW; Tzeng SF; Yang CS
    Biomaterials; 2008 Dec; 29(34):4546-53. PubMed ID: 18774604
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Novel Thermosensitive Hydrogel Promotes Spinal Cord Repair by Regulating Mitochondrial Function.
    Li Y; Yang L; Hu F; Xu J; Ye J; Liu S; Wang L; Zhuo M; Ran B; Zhang H; Ye J; Xiao J
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25155-25172. PubMed ID: 35618676
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury.
    Zhao YZ; Jiang X; Xiao J; Lin Q; Yu WZ; Tian FR; Mao KL; Yang W; Wong HL; Lu CT
    Acta Biomater; 2016 Jan; 29():71-80. PubMed ID: 26472614
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury.
    Li X; Tan J; Xiao Z; Zhao Y; Han S; Liu D; Yin W; Li J; Li J; Wanggou S; Chen B; Ren C; Jiang X; Dai J
    Sci Rep; 2017 Mar; 7():43559. PubMed ID: 28262732
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury.
    Detloff MR; Smith EJ; Quiros Molina D; Ganzer PD; Houlé JD
    Exp Neurol; 2014 May; 255():38-48. PubMed ID: 24560714
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote
    Mi S; Chang Z; Wang X; Gao J; Liu Y; Liu W; He W; Qi Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16355-16368. PubMed ID: 36958016
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats.
    Kojima A; Tator CH
    J Neurotrauma; 2002 Feb; 19(2):223-38. PubMed ID: 11893024
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury.
    Shu B; Sun X; Liu R; Jiang F; Yu H; Xu N; An Y
    Neurosci Lett; 2019 Jan; 692():33-40. PubMed ID: 30367954
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury.
    Luo Y; Fan L; Liu C; Wen H; Wang S; Guan P; Chen D; Ning C; Zhou L; Tan G
    Bioact Mater; 2022 Jan; 7():98-111. PubMed ID: 34466720
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multimodal therapy strategy based on a bioactive hydrogel for repair of spinal cord injury.
    Roh EJ; Kim DS; Kim JH; Lim CS; Choi H; Kwon SY; Park SY; Kim JY; Kim HM; Hwang DY; Han DK; Han I
    Biomaterials; 2023 Aug; 299():122160. PubMed ID: 37209541
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.