These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35495987)

  • 81. The neuronal differentiation microenvironment is essential for spinal cord injury repair.
    Zhao Y; Xiao Z; Chen B; Dai J
    Organogenesis; 2017 Jul; 13(3):63-70. PubMed ID: 28598297
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine.
    Han S; Wang B; Jin W; Xiao Z; Li X; Ding W; Kapur M; Chen B; Yuan B; Zhu T; Wang H; Wang J; Dong Q; Liang W; Dai J
    Biomaterials; 2015 Feb; 41():89-96. PubMed ID: 25522968
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Effects of Danshen injection on glial cell line-derived neurotrophic factor mRNA of acute spinal cord injury rats and its mechanisms].
    Wei L; Zhang L
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 2013 Jul; 33(7):933-7. PubMed ID: 24063216
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair.
    Zaviskova K; Tukmachev D; Dubisova J; Vackova I; Hejcl A; Bystronova J; Pravda M; Scigalkova I; Sulakova R; Velebny V; Wolfova L; Kubinova S
    J Biomed Mater Res A; 2018 Apr; 106(4):1129-1140. PubMed ID: 29266693
    [TBL] [Abstract][Full Text] [Related]  

  • 86. New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.
    Ferrero-Gutierrez A; Menendez-Menendez Y; Alvarez-Viejo M; Meana A; Otero J
    Histol Histopathol; 2013 Jan; 28(1):89-100. PubMed ID: 23233062
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury].
    Chen X; Fan Y; Xiao Z; Li X; Yang B; Zhao Y; Hou X; Han S; Dai J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):650-659. PubMed ID: 29905040
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Double crosslinked biomimetic composite hydrogels containing topographical cues and WAY-316606 induce neural tissue regeneration and functional recovery after spinal cord injury.
    Zhao X; Lu X; Li K; Song S; Luo Z; Zheng C; Yang C; Wang X; Wang L; Tang Y; Wang C; Liu J
    Bioact Mater; 2023 Jun; 24():331-345. PubMed ID: 36632504
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Optimized, visible light-induced crosslinkable hybrid gelatin/hyaluronic acid scaffold promotes complete spinal cord injury repair.
    Zhao X; Wang H; Zou Y; Xue W; Zhuang Y; Gu R; Shen H; Dai J
    Biomed Mater; 2022 Jan; 17(2):. PubMed ID: 34937000
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair.
    Cao L; Liu L; Chen ZY; Wang LM; Ye JL; Qiu HY; Lu CL; He C
    Brain; 2004 Mar; 127(Pt 3):535-49. PubMed ID: 14691064
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Bioactive Elastic Scaffolds Loaded with Neural Stem Cells Promote Rapid Spinal Cord Regeneration.
    Gong Z; Lei D; Wang C; Yu C; Xia K; Shu J; Ying L; Du J; Wang J; Huang X; Ni L; Wang C; Lin J; Li F; You Z; Liang C
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6331-6343. PubMed ID: 33449647
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair.
    Liu D; Shu M; Liu W; Shen Y; Long G; Zhao Y; Hou X; Xiao Z; Dai J; Li X
    Biomater Sci; 2021 Apr; 9(8):2955-2971. PubMed ID: 33634811
    [TBL] [Abstract][Full Text] [Related]  

  • 93. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury.
    Babaloo H; Ebrahimi-Barough S; Derakhshan MA; Yazdankhah M; Lotfibakhshaiesh N; Soleimani M; Joghataei MT; Ai J
    J Cell Physiol; 2019 Jul; 234(7):11060-11069. PubMed ID: 30584656
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury.
    Xu HL; Tian FR; Xiao J; Chen PP; Xu J; Fan ZL; Yang JJ; Lu CT; Zhao YZ
    Int J Nanomedicine; 2018; 13():681-694. PubMed ID: 29440894
    [TBL] [Abstract][Full Text] [Related]  

  • 95. ALG-bFGF Hydrogel Inhibiting Autophagy Contributes to Protection of Blood-Spinal Cord Barrier Integrity
    Zhang R; Xie L; Wu F; Xu J; Lu L; Cao L; Li L; Meng W; Zhang H; Shao C; Li X; Chen D
    Front Pharmacol; 2022; 13():828896. PubMed ID: 35330841
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury.
    Yao S; Yu S; Cao Z; Yang Y; Yu X; Mao HQ; Wang LN; Sun X; Zhao L; Wang X
    Int J Nanomedicine; 2018; 13():2883-2895. PubMed ID: 29844671
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor.
    Park J; Lim E; Back S; Na H; Park Y; Sun K
    J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biohybrids for spinal cord injury repair.
    Martínez-Ramos C; Doblado LR; Mocholi EL; Alastrue-Agudo A; Petidier MS; Giraldo E; Pradas MM; Moreno-Manzano V
    J Tissue Eng Regen Med; 2019 Mar; 13(3):509-521. PubMed ID: 30726582
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.
    Qiu XC; Jin H; Zhang RY; Ding Y; Zeng X; Lai BQ; Ling EA; Wu JL; Zeng YS
    Stem Cell Res Ther; 2015 May; 6(1):105. PubMed ID: 26012641
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Controlled release of baricitinib from a thermos-responsive hydrogel system inhibits inflammation by suppressing JAK2/STAT3 pathway in acute spinal cord injury.
    Zheng XQ; Huang JF; Lin JL; Zhu YX; Wang MQ; Guo ML; Zan XJ; Wu AM
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111532. PubMed ID: 33385822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.