These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35496008)

  • 1. Experimental verification of a broadband asymmetric transmission metamaterial in the terahertz region.
    Tao X; Qi L; Yang J; Liu F
    RSC Adv; 2020 Feb; 10(11):6179-6184. PubMed ID: 35496008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz dual-band asymmetric transmission for a single cross-polarized linear wave.
    Tao X; Qi L; Hu H; Fu T; Uqaili JA
    Opt Express; 2021 Jul; 29(14):21044-21055. PubMed ID: 34265901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile polarization manipulation in vanadium dioxide-integrated terahertz metamaterial.
    Lv T; Li Y; Qin C; Qu J; Lv B; Li W; Zhu Z; Li Y; Guan C; Shi J
    Opt Express; 2022 Feb; 30(4):5439-5449. PubMed ID: 35209506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband terahertz metamaterial absorber: design and fabrication.
    Qiu Y; Wang J; Xiao M; Lang T
    Appl Opt; 2021 Nov; 60(32):10055-10061. PubMed ID: 34807109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-functional device: manipulating linear and circular-polarization conversion in a terahertz chiral metamaterial.
    Yin F; Lv Y; Xu D; Ri Jin X; Zhang YQ
    Opt Express; 2023 Aug; 31(17):27171-27182. PubMed ID: 37710797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO
    Luo J; Shi X; Luo X; Hu F; Li G
    Opt Express; 2020 Oct; 28(21):30861-30870. PubMed ID: 33115078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient terahertz polarization conversion with hybrid coupling of chiral metamaterial.
    Wang J; Tian H; Li S; Li L; Wang G; Gao J; Guo W; Zhou Z
    Opt Lett; 2020 Mar; 45(5):1276-1279. PubMed ID: 32108824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple interference theoretical model for graphene metamaterial-based tunable broadband terahertz linear polarization converter design and optimization.
    Lin R; Lu F; He X; Jiang Z; Liu C; Wang S; Kong Y
    Opt Express; 2021 Sep; 29(19):30357-30370. PubMed ID: 34614761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Characterization of Wideband Terahertz Metamaterial Stop-Band Filter.
    Li H; Wang J; Wang X; Feng Y; Sun Z
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Based Controllable Broadband Terahertz Metamaterial Absorber with Transmission Band.
    Zhou Q; Zha S; Liu P; Liu C; Bian LA; Zhang J; Liu H; Ding L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide.
    Wang T; Zhang H; Zhang Y; Zhang Y; Cao M
    Opt Express; 2020 Jun; 28(12):17434-17448. PubMed ID: 32679951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active tunable plasmonically induced polarization conversion in the THz regime.
    Ling F; Yao G; Yao J
    Sci Rep; 2016 Oct; 6():34994. PubMed ID: 27734912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband Anisotropy in Terahertz Metamaterial With Single-Layer Gap Ring Array.
    Xia L; Cui HL; Zhang M; Dang S; Du C
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31337026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device.
    Li H; Xu W; Cui Q; Wang Y; Yu J
    Opt Express; 2020 Dec; 28(26):40060-40074. PubMed ID: 33379540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VO
    Zhao Y; Yang R; Wang Y; Zhang W; Tian J
    Opt Express; 2022 Jul; 30(15):27407-27417. PubMed ID: 36236912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz metamaterial with broadband and low-dispersion high refractive index.
    Gao X; Yu FL; Cai CL; Guan CY; Shi JH; Hu F
    Opt Lett; 2020 Sep; 45(17):4754-4757. PubMed ID: 32870849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures.
    Lu Y; Li J; Zhang S; Sun J; Yao JQ
    Appl Opt; 2018 Jul; 57(21):6269-6275. PubMed ID: 30118008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene.
    Chen Z; Chen J; Tang H; Shen T; Zhang H
    Opt Express; 2022 Feb; 30(5):6778-6785. PubMed ID: 35299456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide-graphene integrated configuration.
    Tang B; Ren Y
    Phys Chem Chem Phys; 2022 Apr; 24(14):8408-8414. PubMed ID: 35333265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.