BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35496340)

  • 1. Processing-properties-performance triad relationship in a
    Elisadiki J; Gabookolwe MK; Onisuru OR; Meijboom R; Muiva C; King'ondu CK
    RSC Adv; 2022 Apr; 12(20):12631-12646. PubMed ID: 35496340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers.
    Sahoo MK; Rao GR
    Nanoscale Adv; 2021 Sep; 3(18):5417-5429. PubMed ID: 36132632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors.
    Wang D; Xu Z; Lian Y; Ban C; Zhang H
    J Colloid Interface Sci; 2019 Apr; 542():400-409. PubMed ID: 30771635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Carbon Material Derived from Steam-Exploded Poplar for Supercapacitor: Insights into Synergistic Effect of KOH and Urea on the Structure and Electrochemical Properties.
    Ding D; Ma L; Li X; Liu Z; Hui L; Zhang F; Zhao Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Porous Carbon Derived from Sichuan Pepper for High-Performance Symmetric Supercapacitor with Decent Rate Capability and Cycling Stability.
    Zhang H; Xiao W; Zhou W; Chen S; Zhang Y
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting Corncob to Activated Porous Carbon for Supercapacitor Application.
    Yang S; Zhang K
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood-dust of
    Shrestha D; Rajbhandari A
    Heliyon; 2021 Sep; 7(9):e07917. PubMed ID: 34522810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Hierarchical Porous Carbon Nanoflakes for High-Performance Supercapacitors.
    Yao Y; Zhang Y; Li L; Wang S; Dou S; Liu X
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34944-34953. PubMed ID: 28920670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor.
    Sylla NF; Ndiaye NM; Ngom BD; Mutuma BK; Momodu D; Chaker M; Manyala N
    J Colloid Interface Sci; 2020 Jun; 569():332-345. PubMed ID: 32126346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.
    Sheng H; Wei M; D'Aloia A; Wu G
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30212-30224. PubMed ID: 27754661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical properties of an activated carbon xerogel monolith from resorcinol-formaldehyde for supercapacitor electrode applications.
    Huang M; Yoo SJ; Lee JS; Yoon TH
    RSC Adv; 2021 Oct; 11(53):33192-33201. PubMed ID: 35497528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical performance of graphene-coated activated mesocarbon microbeads as a supercapacitor electrode.
    Xia H; Hu J; Li J; Wang K
    RSC Adv; 2019 Feb; 9(12):7004-7014. PubMed ID: 35518474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Performance of Chemically Activated Carbons from Sawdust as Supercapacitor Electrodes.
    Nazhipkyzy M; Yeleuov M; Sultakhan ST; Maltay AB; Zhaparova AA; Assylkhanova DD; Nemkayeva RR
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H
    Breitenbach S; Duchoslav J; Mardare AI; Unterweger C; Stifter D; Hassel AW; Fürst C
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors.
    Shrestha LK; Wei Z; Subramaniam G; Shrestha RG; Singh R; Sathish M; Ma R; Hill JP; Nakamura J; Ariga K
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural resource-derived NiO nanoparticles via aloe vera for high-performance symmetric supercapacitor.
    Bulla M; Kumar V; Devi R; Kumar S; Sisodiya AK; Dahiya R; Mishra AK
    Sci Rep; 2024 Mar; 14(1):7389. PubMed ID: 38548838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Study on Superior Mesoporous Activated Carbons for Ultra Power Density Supercapacitor from Biomass Precursors.
    Bang JH; Lee BH; Choi YC; Lee HM; Kim BJ
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitridation Temperature Effect on Carbon Vanadium Oxynitrides for a Symmetric Supercapacitor.
    Ndiaye NM; Sylla NF; Ngom BD; Mutuma BK; Dangbegnon JK; Ray SC; Manyala N
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31835790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.
    Ma G; Hua F; Sun K; Fenga E; Peng H; Zhang Z; Lei Z
    R Soc Open Sci; 2018 Jan; 5(1):171186. PubMed ID: 29410830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Fabrication of Activated Carbon from a Bio-Waste Desmostachya bipinnata for the Improved Supercapacitor Performance.
    Gupta GK; Sagar P; Pandey SK; Srivastava M; Singh AK; Singh J; Srivastava A; Srivastava SK; Srivastava A
    Nanoscale Res Lett; 2021 May; 16(1):85. PubMed ID: 33987738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.