These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35496413)

  • 1. Investigation on the effects of water loss on the solar spectrum reflectance and transmittance of
    Gao Y; Tang B; Lu B; Ji G; Ye H
    RSC Adv; 2021 Nov; 11(59):37268-37275. PubMed ID: 35496413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model.
    Jiang J; Comar A; Burger P; Bancal P; Weiss M; Baret F
    Plant Methods; 2018; 14():23. PubMed ID: 29581726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A light scattering camouflage membrane with similar solar spectrum reflectance to leaves based on a chlorophyll and titanium dioxide composite.
    Gao Y; Chen Y; Li Y; Liu W; Lu B
    RSC Adv; 2023 Nov; 13(48):33743-33753. PubMed ID: 38020034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PROSPECT-PMP+: Simultaneous Retrievals of Chlorophyll a and b, Carotenoids and Anthocyanins in the Leaf Optical Properties Model.
    Zhang Y; Li X; Wang C; Zhang R; Jin L; He Z; Tian S; Wu K; Wang F
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis.
    Li D; Wang X; Zheng H; Zhou K; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2018; 14():76. PubMed ID: 30181765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Simulation of Needle Reflectance Spectrum and Sensitivity Analysis of Biochemical Parameters of Pinus Yunnanensis in Different Healthy Status].
    Lin QN; Huang HG; Chen L; Yu LF; Huang K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2538-45. PubMed ID: 30074360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance.
    Yamada N; Fujimura S
    Appl Opt; 1991 Sep; 30(27):3964-73. PubMed ID: 20706488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging.
    Bergsträsser S; Fanourakis D; Schmittgen S; Cendrero-Mateo MP; Jansen M; Scharr H; Rascher U
    Plant Methods; 2015; 11(1):1. PubMed ID: 25649124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.
    Cheng T; Rivard B; Sánchez-Azofeifa AG; Féret JB; Jacquemoud S; Ustin SL
    J Plant Physiol; 2012 Aug; 169(12):1134-42. PubMed ID: 22608180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophotonic in situ sensor for plant leaves.
    Conejo E; Frangi JP; de Rosny G
    Appl Opt; 2010 Apr; 49(10):1687-97. PubMed ID: 20357848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and transmittance of natural leaves.
    Xu K; Ye H
    Sci Rep; 2023 Mar; 13(1):4694. PubMed ID: 36949090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean effective optical constants of thirteen kinds of plant leaves.
    Allen WA; Gausman HW; Richardson AJ; Wiegand CL
    Appl Opt; 1970 Nov; 9(11):2573-7. PubMed ID: 20094309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A inversion model for remote sensing of leaf water content based on the leaf optical property].
    Fang MH; Ju WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):167-71. PubMed ID: 25993842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant ecophysiological processes in spectral profiles: perspective from a deciduous broadleaf forest.
    Noda HM; Muraoka H; Nasahara KN
    J Plant Res; 2021 Jul; 134(4):737-751. PubMed ID: 33970379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Measuring the Spectrum of Extinction Coefficient and Reflectance for Cadmium Compounds from 400 to 900 nm].
    Liang YH; Deng RR; Liu YM; Lin L; Qin Y; He YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4006-12. PubMed ID: 30235510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.
    Zhang Y; Huang J; Wang F; Blackburn GA; Zhang HK; Wang X; Wei C; Zhang K; Wei C
    Sci Rep; 2017 Jul; 7(1):6429. PubMed ID: 28743986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf optical system modeled as a stochastic process.
    Tucker CJ; Garratt MW
    Appl Opt; 1977 Mar; 16(3):635-42. PubMed ID: 20168555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of dust particle pollution and construction of a leaf dust deposition prediction model based on leaf reflection spectrum characteristics.
    Zhu J; Yu Q; Zhu H; He W; Xu C; Liao J; Zhu Q; Su K
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36764-36775. PubMed ID: 31745789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation model and its trade-off strategy of Mangifera persiciforma Colletotrichum gloeosporioides degree based on leaf reflection spectrum.
    Zhu J; Cao Y; Yao J; He W; Guo X; Zhao J; Xu Q; Zhang X; Xu C
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):44288-44300. PubMed ID: 33847889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.