These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35496525)
1. Surfactant concentration modulates the motion and placement of microparticles in an inhomogeneous electric field. Masukawa MK; Hayakawa M; Takinoue M RSC Adv; 2020 Feb; 10(15):8895-8904. PubMed ID: 35496525 [TBL] [Abstract][Full Text] [Related]
2. Optical manipulation of charged microparticles in polar fluids. Pesce G; Lisbino V; Rusciano G; Sasso A Electrophoresis; 2013 Dec; 34(22-23):3141-9. PubMed ID: 24166681 [TBL] [Abstract][Full Text] [Related]
3. Dynamic interfacial tension measurement under electric fields allows detection of charge carriers in nonpolar liquids. Sengupta R; Khair AS; Walker LM J Colloid Interface Sci; 2020 May; 567():18-27. PubMed ID: 32035390 [TBL] [Abstract][Full Text] [Related]
4. Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Wuzhang J; Song Y; Sun R; Pan X; Li D Electrophoresis; 2015 Oct; 36(19):2489-97. PubMed ID: 26140616 [TBL] [Abstract][Full Text] [Related]
5. Combinatory electric-field-guided deposition for spatial microparticles patterning. Zheng Z; Zhang Y; Xing J; Li X; Zhu Z; Ye M; Shen S; Xu RX Mater Today Bio; 2024 Oct; 28():101207. PubMed ID: 39285943 [TBL] [Abstract][Full Text] [Related]
6. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers. Wang Y; Pan H; Mei D; Xu C; Weng W Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105 [TBL] [Abstract][Full Text] [Related]
7. Electric field assisted transport of dielectric droplets dispersed in aqueous solutions of ionic surfactants. Tuček J; Slouka Z; Přibyl M Electrophoresis; 2018 Dec; 39(23):2997-3005. PubMed ID: 30187500 [TBL] [Abstract][Full Text] [Related]
8. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting. Roques-Carmes T; Gigante A; Commenge JM; Corbel S Langmuir; 2009 Nov; 25(21):12771-9. PubMed ID: 19785398 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous and independent topological control of identical microparticles in non-periodic energy landscapes. Stuhlmüller NCX; Farrokhzad F; Kuświk P; Stobiecki F; Urbaniak M; Akhundzada S; Ehresmann A; Fischer TM; de Las Heras D Nat Commun; 2023 Nov; 14(1):7517. PubMed ID: 37980403 [TBL] [Abstract][Full Text] [Related]
10. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air. Park H; LeBrun TW ACS Appl Mater Interfaces; 2016 Dec; 8(50):34904-34913. PubMed ID: 27936542 [TBL] [Abstract][Full Text] [Related]
11. Controlling colloid charge in nonpolar liquids with surfactants. Smith GN; Eastoe J Phys Chem Chem Phys; 2013 Jan; 15(2):424-39. PubMed ID: 23187453 [TBL] [Abstract][Full Text] [Related]
12. Surfactant-Driven Assembly of Poly(ethylenimine)-Coated Microparticles at the Liquid Crystal/Water Interface. Ong LH; Yang KL J Phys Chem B; 2016 Feb; 120(4):825-33. PubMed ID: 26727212 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis. Sugimoto Y; Kitazumi Y; Tsujimura S; Shirai O; Yamamoto M; Kano K Biosens Bioelectron; 2015 Jan; 63():138-144. PubMed ID: 25078712 [TBL] [Abstract][Full Text] [Related]
14. Rotary motion of a micro-solid particle under a stationary difference of electric potential. Kurimura T; Mori S; Miki M; Yoshikawa K J Chem Phys; 2016 Jul; 145(3):034902. PubMed ID: 27448901 [TBL] [Abstract][Full Text] [Related]
15. Transport of charged Aerosol OT inverse micelles in nonpolar liquids. Karvar M; Strubbe F; Beunis F; Kemp R; Smith A; Goulding M; Neyts K Langmuir; 2011 Sep; 27(17):10386-91. PubMed ID: 21728309 [TBL] [Abstract][Full Text] [Related]
16. Surfactant mediated charging of polymer particles in a nonpolar liquid. Guo Q; Lee J; Singh V; Behrens SH J Colloid Interface Sci; 2013 Feb; 392():83-89. PubMed ID: 23142011 [TBL] [Abstract][Full Text] [Related]
17. Electric field induced charging of colloidal particles in a nonpolar liquid. Schreuer C; Vandewiele S; Strubbe F; Neyts K; Beunis F J Colloid Interface Sci; 2018 Apr; 515():248-254. PubMed ID: 29351854 [TBL] [Abstract][Full Text] [Related]
18. Electric charging in nonpolar liquids because of nonionizable surfactants. Guo Q; Singh V; Behrens SH Langmuir; 2010 Mar; 26(5):3203-7. PubMed ID: 19921784 [TBL] [Abstract][Full Text] [Related]
19. Manipulation of microparticles for construction of array patterns by negative dielectrophoresis using multilayered array and grid electrodes. Ino K; Shiku H; Ozawa F; Yasukawa T; Matsue T Biotechnol Bioeng; 2009 Nov; 104(4):709-18. PubMed ID: 19530080 [TBL] [Abstract][Full Text] [Related]
20. Modeling a Dielectrophoretic Microfluidic Device with Vertical Interdigitated Transducer Electrodes for Separation of Microparticles Based on Size. Alnaimat F; Mathew B; Hilal-Alnaqbi A Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]