These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 3549657)

  • 1. Morphological and electrophysiological study of the inner ear and the central auditory pathways following whole body fetal irradiation.
    Anniko M; Borg E; Hultcrantz M; Webster DB
    Hear Res; 1987; 26(1):95-104. PubMed ID: 3549657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of the adult inner ear in the mouse following prenatal irradiation.
    Hultcrantz M
    Scand Audiol Suppl; 1985; 24():1-24. PubMed ID: 3879375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope.
    Hultcrantz M
    Scanning Microsc; 1988 Sep; 2(3):1725-37. PubMed ID: 3059484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the adult cochlea following prenatal irradiation.
    Hultcrantz M; Anniko M; Borg E
    Acta Otolaryngol Suppl; 1985; 425():1-31. PubMed ID: 3865495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of prenatal gamma irradiation on the ageing of the cochlea.
    Hultcrantz M; Anniko M; Borg E
    Acta Otolaryngol; 1989; 108(5-6):414-23. PubMed ID: 2686346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scanning electron microscopic study of vestibular organ malformation following prenatal gamma irradiation.
    Hultcrantz M
    Arch Otorhinolaryngol; 1987; 244(4):229-35. PubMed ID: 3318776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of prenatal irradiation on second generation mice.
    Hultcrantz M
    Acta Otolaryngol; 1995 Sep; 115(5):638-42. PubMed ID: 8928635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dose gamma irradiation effects on labyrinthine development in vitro.
    Hultcrantz M; Anniko M
    Acta Otolaryngol; 1985; 100(5-6):365-78. PubMed ID: 4082975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of glycoconjugates in the mouse inner ear after prenatal irradiation.
    Hultcrantz M
    Eur Arch Otorhinolaryngol; 1992; 249(3):134-9. PubMed ID: 1642864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular hair cell pathology following low-dose irradiation during embryonic development.
    Anniko M; Hultcrantz M
    Acta Otolaryngol; 1984; 98(3-4):292-301. PubMed ID: 6541855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F; Cao C; Huang C; Li Q; Li T; Liu X; Zhang S; Ceng X; Wang C
    Cell Mol Biol (Noisy-le-grand); 2018 Sep; 64(12):2-10. PubMed ID: 30301494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg.
    Maskey D; Kim HG; Suh MW; Roh GS; Kim MJ
    Int J Mol Med; 2014 Aug; 34(2):409-19. PubMed ID: 24866721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hearing with selective inner hair cell loss.
    Schrott A; Stephan K; Spoendlin H
    Hear Res; 1989 Jul; 40(3):213-9. PubMed ID: 2793604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant frequency tuning and early stereociliary derangement in genetic inner ear disease.
    Wenngren BI; Anniko M
    Acta Otolaryngol; 1990; 109(3-4):202-12. PubMed ID: 2316343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.
    Altschuler RA; Dolan DF; Halsey K; Kanicki A; Deng N; Martin C; Eberle J; Kohrman DC; Miller RA; Schacht J
    Neuroscience; 2015 Apr; 292():22-33. PubMed ID: 25665752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic influences on susceptibility of the auditory system to aging and environmental factors.
    Li HS
    Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal distribution of cellular retinoid binding protein gene transcripts in the developing and the adult cochlea. Morphological and functional consequences in CRABP- and CRBPI-null mutant mice.
    Romand R; Sapin V; Ghyselinck NB; Avan P; Le Calvez S; Dollé P; Chambon P; Mark M
    Eur J Neurosci; 2000 Aug; 12(8):2793-804. PubMed ID: 10971621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perinatal thiamine deficiency causes cochlear innervation abnormalities in mice.
    Maison SF; Yin Y; Liberman LD; Liberman MC
    Hear Res; 2016 May; 335():94-104. PubMed ID: 26944177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.