BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 35496581)

  • 1. Analysis of Acousto-Optic Phenomenon in SAW Acoustofluidic Chip and Its Application in Light Refocusing.
    Qin X; Chen X; Yang Q; Yang L; Liu Y; Zhang C; Wei X; Wang W
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Fueled Submarine-Like Droplet.
    Yang Y; Chen R; Zhu X; Ye D; Yang Y; Li W; Li D; Li H; Liao Q
    Adv Sci (Weinh); 2022 Jul; 9(21):e2201341. PubMed ID: 35596606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-droplet particle enrichment in a focused acoustic field.
    Qin X; Wang H; Wei X
    RSC Adv; 2020 Mar; 10(20):11565-11572. PubMed ID: 35496581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip background dilution in droplets with high particle recovery using acoustophoresis.
    Liu Z; Fornell A; Barbe L; Hjort K; Tenje M
    Biomicrofluidics; 2019 Nov; 13(6):064123. PubMed ID: 31832121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of single cells inside nanoliter water droplets using acoustic forces.
    Gerlt MS; Haidas D; Ratschat A; Suter P; Dittrich PS; Dual J
    Biomicrofluidics; 2020 Nov; 14(6):064112. PubMed ID: 33381252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonically sculpted virtual relay lens for in situ microimaging.
    Scopelliti MG; Chamanzar M
    Light Sci Appl; 2019; 8():65. PubMed ID: 31645914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ti (IV) attached-phosphonic acid functionalized capillary monolith as a stationary phase for in-syringe-type fast and robust enrichment of phosphopeptides.
    Salimi K; Kip Ç; Çelikbıçak Ö; Usta DD; Pınar A; Salih B; Tuncel A
    Biomed Chromatogr; 2019 Jun; 33(6):e4488. PubMed ID: 30656732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force.
    Park J; Destgeer G; Kim H; Cho Y; Sung HJ
    Lab Chip; 2018 Sep; 18(19):2936-2945. PubMed ID: 30140820
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.