These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35496598)

  • 1. Functionalizing triptycene to create 3D high-performance non-fullerene acceptors.
    Yang Y; Yao C; Li L; Bo M; Zhang J; Peng C; Wang J
    RSC Adv; 2020 Mar; 10(20):12004-12012. PubMed ID: 35496598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused-Ring Electron Acceptors for Photovoltaics and Beyond.
    Wang J; Zhan X
    Acc Chem Res; 2021 Jan; 54(1):132-143. PubMed ID: 33284599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacing the cyano (-C[triple bond, length as m-dash]N) group to design environmentally friendly fused-ring electron acceptors.
    Yao C; Yang Y; Li L; Bo M; Peng C; Huang Z; Wang J
    Phys Chem Chem Phys; 2021 Sep; 23(33):18085-18092. PubMed ID: 34397073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Molecular Design of Fused Ring Electron Acceptors for Organic Solar Cells.
    Dey S
    Small; 2019 May; 15(21):e1900134. PubMed ID: 30989808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells.
    Hou L; Lv J; Wobben F; Le Corre VM; Tang H; Singh R; Kim M; Wang F; Sun H; Chen W; Xiao Z; Kumar M; Xu T; Zhang W; McCulloch I; Duan T; Xie H; Koster LJA; Lu S; Kan Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56231-56239. PubMed ID: 33270414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The principles, design and applications of fused-ring electron acceptors.
    Wang J; Xue P; Jiang Y; Huo Y; Zhan X
    Nat Rev Chem; 2022 Sep; 6(9):614-634. PubMed ID: 37117709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Nonfused-Ring Electron Acceptors Enabled by Noncovalent Conformational Locks.
    Zhang X; Gu X; Huang H
    Acc Chem Res; 2024 Mar; 57(6):981-991. PubMed ID: 38431881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Terminal Electron-Withdrawing Group on the Photovoltaic Performance of Asymmetric Fused-Ring Electron Acceptors.
    Li C; Lu G; Ryu HS; Sun X; Woo HY; Sun Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43207-43214. PubMed ID: 36099472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Nonfused-Ring Electron Acceptors with Fullerene Pendant for High-Efficiency Organic Solar Cells.
    Zhou Y; Li M; Shen S; Wang J; Zheng R; Lu H; Liu Y; Ma Z; Song J; Bo Z
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1603-1611. PubMed ID: 33373184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.
    Han G; Yi Y
    Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden Structure Ordering Along Backbone of Fused-Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction.
    Mai J; Xiao Y; Zhou G; Wang J; Zhu J; Zhao N; Zhan X; Lu X
    Adv Mater; 2018 Jul; ():e1802888. PubMed ID: 29978515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Noncovalently Fused-Ring Electron Acceptor Based on 3,7-Dialkyloxybenzo[1,2-b:4,5-b']dithiophene for Low-Cost and High-Performance Organic Solar Cells.
    Zhang X; Qin L; Li L; Liu X; Wei Y; Huang H
    Macromol Rapid Commun; 2022 Aug; 43(16):e2200085. PubMed ID: 35298056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TD-DFT benchmark for UV-visible spectra of fused-ring electron acceptors using global and range-separated hybrids.
    Ali A; Rafiq MI; Zhang Z; Cao J; Geng R; Zhou B; Tang W
    Phys Chem Chem Phys; 2020 Apr; 22(15):7864-7874. PubMed ID: 32227033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Star-Shaped Fused-Ring Electron Acceptors with a
    Wu X; Wang W; Hang H; Li H; Chen Y; Xu Q; Tong H; Wang L
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28115-28124. PubMed ID: 31296002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Interplay between Asymmetric Backbone Conformation, Molecular Aggregation, and Charge-Carrier Dynamics in Fused-Ring Electron Acceptor-Based Bulk Heterojunction Solar Cells.
    Song X; Hou L; Guo R; Wei Q; Yang L; Jiang X; Tu S; Zhang A; Kan Z; Tang W; Xing G; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2961-2970. PubMed ID: 33412838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the nature of the vertical excited states of fused-ring electron acceptors using TD-DFT and density-based charge transfer.
    Ali A; Rafiq MI; Zhou B; Tang W
    Phys Chem Chem Phys; 2021 Jul; 23(28):15282-15291. PubMed ID: 34250997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a New Fused-Ring Electron Acceptor with Excellent Compatibility to Wide-Bandgap Polymer Donors for High-Performance Organic Photovoltaics.
    Liu W; Zhang J; Zhou Z; Zhang D; Zhang Y; Xu S; Zhu X
    Adv Mater; 2018 Jun; 30(26):e1800403. PubMed ID: 29766585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel quad-rotor-shaped photovoltaic materials: first example of fused-ring non-fullerene acceptors with proficient photovoltaic properties for high-performance solar cells.
    Yasmeen F; Alvi MU; Alvi Y; Khan MU; Yaqoob J; Hussain R; Alam MM; Imran M; Rehman MMU
    J Mol Model; 2021 Dec; 28(1):18. PubMed ID: 34962590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Performance of Fused-Ring Electron Acceptor Using Pyrrole Instead of Thiophene.
    Lu B; Chen Z; Jia B; Wang J; Ma W; Lian J; Zeng P; Qu J; Zhan X
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14029-14036. PubMed ID: 32122116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering.
    Zhang X; Qin L; Yu J; Li Y; Wei Y; Liu X; Lu X; Gao F; Huang H
    Angew Chem Int Ed Engl; 2021 May; 60(22):12475-12481. PubMed ID: 33749088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.