These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35496789)

  • 1. An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines.
    Kar B; Sabharwal A; Restrepo-Castillo S; Simone BW; Clark KJ; Ekker SC
    STAR Protoc; 2022 Jun; 3(2):101288. PubMed ID: 35496789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The FusX TALE Base Editor (FusXTBE) for Rapid Mitochondrial DNA Programming of Human Cells
    Sabharwal A; Kar B; Restrepo-Castillo S; Holmberg SR; Mathew ND; Kendall BL; Cotter RP; WareJoncas Z; Seiler C; Nakamaru-Ogiso E; Clark KJ; Ekker SC
    CRISPR J; 2021 Dec; 4(6):799-821. PubMed ID: 34847747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases.
    Cho SI; Lee S; Mok YG; Lim K; Lee J; Lee JM; Chung E; Kim JS
    Cell; 2022 May; 185(10):1764-1776.e12. PubMed ID: 35472302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating stable isolated mitochondrial recipient clones in mammalian cells using MitoPunch mitochondrial transfer.
    Sercel AJ; Napior AJ; Patananan AN; Wu TH; Chiou PY; Teitell MA
    STAR Protoc; 2021 Dec; 2(4):100850. PubMed ID: 34632418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system.
    Farooq U; Notani D
    STAR Protoc; 2021 Dec; 2(4):100857. PubMed ID: 34746853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science.
    Ma AC; McNulty MS; Poshusta TL; Campbell JM; Martínez-Gálvez G; Argue DP; Lee HB; Urban MD; Bullard CE; Blackburn PR; Man TK; Clark KJ; Ekker SC
    Hum Gene Ther; 2016 Jun; 27(6):451-63. PubMed ID: 26854857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized CRISPR/Cas9-mediated single nucleotide mutation in adherent cancer cell lines.
    Gao P; Dong X; Wang Y; Wei GH
    STAR Protoc; 2021 Jun; 2(2):100419. PubMed ID: 33870225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast.
    Novarina D; Koutsoumpa A; Milias-Argeitis A
    STAR Protoc; 2022 Jun; 3(2):101358. PubMed ID: 35712010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mitochondrial double-stranded RNAs in human cells.
    Kim S; Yoon J; Lee K; Kim Y
    STAR Protoc; 2023 Mar; 4(1):102007. PubMed ID: 36853732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knock-In Strategy for Editing Human and Zebrafish Mitochondrial DNA Using Mito-CRISPR/Cas9 System.
    Bian WP; Chen YL; Luo JJ; Wang C; Xie SL; Pei DS
    ACS Synth Biol; 2019 Apr; 8(4):621-632. PubMed ID: 30955321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to electroporate DNA plasmids into Ciona robusta embryos at the 1-cell stage.
    Jindal GA; Lim F; Tellez K; Song BP; Bantle AT; Farley EK
    STAR Protoc; 2024 Jul; 5(3):103107. PubMed ID: 38963758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A digital PCR-based protocol to detect and quantify RNA editing events at hotspots.
    Oh S; Buisson R
    STAR Protoc; 2022 Mar; 3(1):101148. PubMed ID: 35284835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized protocols for efficient gene editing in mouse hepatocytes
    Chen Y; Ding Q
    STAR Protoc; 2022 Mar; 3(1):101062. PubMed ID: 35005644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue.
    Silva-Pinheiro P; Nash PA; Van Haute L; Mutti CD; Turner K; Minczuk M
    Nat Commun; 2022 Feb; 13(1):750. PubMed ID: 35136065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No editing of mitochondrial plasmid transcripts in mitochondria of Physarum that have an RNA-editing system.
    Takano H; Kawano S; Kuroiwa T
    DNA Res; 1997 Feb; 4(1):67-71. PubMed ID: 9179498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery.
    Sercel AJ; Patananan AN; Man T; Wu TH; Yu AK; Guyot GW; Rabizadeh S; Niazi KR; Chiou PY; Teitell MA
    Elife; 2021 Jan; 10():. PubMed ID: 33438576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial DNA Base Editing: Good Editing Things Still Come in Small Packages.
    Bacman SR; Moraes CT
    Mol Cell; 2020 Sep; 79(5):708-709. PubMed ID: 32888436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Mitochondrial Genome Editing by CRISPR/Cas9.
    Jo A; Ham S; Lee GH; Lee YI; Kim S; Lee YS; Shin JH; Lee Y
    Biomed Res Int; 2015; 2015():305716. PubMed ID: 26448933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New potentials of mitochondrial DNA editing.
    Wang W; Wang X
    Cell Biol Toxicol; 2020 Oct; 36(5):391-393. PubMed ID: 32734362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimized protocol for the extraction and quantification of cytosolic DNA in mammalian cells.
    Jahun AS; Sorgeloos F; Goodfellow IG
    STAR Protoc; 2024 Mar; 5(1):102913. PubMed ID: 38393950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.