These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 35496872)
21. Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection. Ponlamuangdee K; Rattanabut C; Viriyakitpattana N; Roeksrungruang P; Karn-Orachai K; Pimalai D; Bamrungsap S Anal Methods; 2022 May; 14(18):1765-1773. PubMed ID: 35470360 [TBL] [Abstract][Full Text] [Related]
22. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection. Cai Y; Huang L; Wang H; Dong W; Zhang Y; Zhang W; Liu Y; Li G; Shang F; Tong H Nanotechnology; 2019 Mar; 30(12):125701. PubMed ID: 30572325 [TBL] [Abstract][Full Text] [Related]
23. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. Li X; Lin X; Fang G; Dong H; Li J; Cong S; Wang L; Yang S J Colloid Interface Sci; 2022 Aug; 620():388-398. PubMed ID: 35436620 [TBL] [Abstract][Full Text] [Related]
24. Hierarchically-Designed 3D Flower-Like Composite Nanostructures as an Ultrastable, Reproducible, and Sensitive SERS Substrate. Yüksel S; Ziegler M; Goerke S; Huebner U; Weber K; Schaaf P; Meyer HG; Cialla-May D; Popp J ACS Appl Mater Interfaces; 2017 Nov; 9(44):38854-38862. PubMed ID: 29053250 [TBL] [Abstract][Full Text] [Related]
25. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO Huang J; Ma D; Chen F; Chen D; Bai M; Xu K; Zhao Y ACS Appl Mater Interfaces; 2017 Mar; 9(8):7436-7446. PubMed ID: 28177604 [TBL] [Abstract][Full Text] [Related]
26. Efficient Enrichment and Self-Assembly of Hybrid Nanoparticles into Removable and Magnetic SERS Substrates for Sensitive Detection of Environmental Pollutants. Tang S; Li Y; Huang H; Li P; Guo Z; Luo Q; Wang Z; Chu PK; Li J; Yu XF ACS Appl Mater Interfaces; 2017 Mar; 9(8):7472-7480. PubMed ID: 28181793 [TBL] [Abstract][Full Text] [Related]
27. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776 [TBL] [Abstract][Full Text] [Related]
28. Preparation and Application of Two-Dimensional Ta Wang T; Zhu C; Dong P Langmuir; 2024 Oct; 40(42):22015-22026. PubMed ID: 39382521 [TBL] [Abstract][Full Text] [Related]
29. Size-dependent surface enhanced Raman scattering activity of plasmonic AuNS@AgNCs for rapid and sensitive detection of Butyl benzyl phthalate. Wang Q; Wang J; Li M; Ge Z; Zhang X; Luan L; Li P; Xu W Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119131. PubMed ID: 33279408 [TBL] [Abstract][Full Text] [Related]
30. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Li J; Yan H; Tan X; Lu Z; Han H Anal Chem; 2019 Mar; 91(6):3885-3892. PubMed ID: 30793591 [TBL] [Abstract][Full Text] [Related]
31. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
32. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation. Xing T; Qian Q; Ye H; Wang Z; Jin Y; Zhang N; Wang M; Zhou Y; Gao X; Wu L Biosens Bioelectron; 2022 Sep; 212():114430. PubMed ID: 35671694 [TBL] [Abstract][Full Text] [Related]
33. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Li Z; Jiang S; Huo Y; Ning T; Liu A; Zhang C; He Y; Wang M; Li C; Man B Nanoscale; 2018 Mar; 10(13):5897-5905. PubMed ID: 29546897 [TBL] [Abstract][Full Text] [Related]
34. DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates. Chowdhury E; Rahaman MS; Sathitsuksanoh N; Grapperhaus CA; O'Toole MG Nanotechnology; 2021 Jan; 32(2):025506. PubMed ID: 32987380 [TBL] [Abstract][Full Text] [Related]
35. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. Chen M; Phang IY; Lee MR; Yang JK; Ling XY Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081 [TBL] [Abstract][Full Text] [Related]
36. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
37. Facile fabrication of silver nanoparticle decorated α-Fe Bekana D; Liu R; Li S; Lai Y; Liu JF Anal Chim Acta; 2018 May; 1006():74-82. PubMed ID: 30016266 [TBL] [Abstract][Full Text] [Related]
38. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. Li R; Gui B; Mao H; Yang Y; Chen D; Xiong J ACS Sens; 2020 Nov; 5(11):3420-3431. PubMed ID: 32929960 [TBL] [Abstract][Full Text] [Related]
39. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
40. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates. Wang S; Tay LL; Liu H Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]