These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3549702)

  • 1. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12.
    Wackett LP; Wanner BL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Apr; 169(4):1753-6. PubMed ID: 3549702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source.
    Gama SR; Vogt M; Kalina T; Hupp K; Hammerschmidt F; Pallitsch K; Zechel DL
    ACS Chem Biol; 2019 Apr; 14(4):735-741. PubMed ID: 30810303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Catabolism of methylphosphonic acid and its physiological regulation in Escherichia coli].
    Matys SV; Laurinavichius KS; Nesmeianova MA
    Mikrobiologiia; 1996; 65(4):481-7. PubMed ID: 8992246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B.
    Chen CM; Ye QZ; Zhu ZM; Wanner BL; Walsh CT
    J Biol Chem; 1990 Mar; 265(8):4461-71. PubMed ID: 2155230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway.
    Hove-Jensen B; McSorley FR; Zechel DL
    J Am Chem Soc; 2011 Mar; 133(10):3617-24. PubMed ID: 21341651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescent substrate for carbon-phosphorus lyase: towards the pathway for organophosphonate metabolism in bacteria.
    He SM; Luo Y; Hove-Jensen B; Zechel DL
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5954-7. PubMed ID: 19733071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
    Yakovleva GM; Kim SK; Wanner BL
    Appl Microbiol Biotechnol; 1998 May; 49(5):573-8. PubMed ID: 9650256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi::lacZ(Mu d1) transcriptional fusions.
    Metcalf WW; Steed PM; Wanner BL
    J Bacteriol; 1990 Jun; 172(6):3191-200. PubMed ID: 2160940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli.
    Wanner BL; Boline JA
    J Bacteriol; 1990 Mar; 172(3):1186-96. PubMed ID: 2155195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes.
    Murata K; Higaki N; Kimura A
    Biochem Biophys Res Commun; 1988 Nov; 157(1):190-5. PubMed ID: 3196331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes for phosphonate biodegradation in Escherichia coli.
    Wanner BL
    SAAS Bull Biochem Biotechnol; 1992 Jan; 5():1-6. PubMed ID: 1368181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi.
    Metcalf WW; Wanner BL
    J Bacteriol; 1991 Jan; 173(2):587-600. PubMed ID: 1846145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12.
    Wanner BL
    J Mol Biol; 1986 Sep; 191(1):39-58. PubMed ID: 3540312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-Phosphorus Lyase-the State of the Art.
    Stosiek N; Talma M; Klimek-Ochab M
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli.
    Hove-Jensen B; Rosenkrantz TJ; Zechel DL; Willemoës M
    J Bacteriol; 2010 Jan; 192(1):370-4. PubMed ID: 19854894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.