These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35497134)

  • 1. Oleogelation using pulse protein-stabilized foams and their potential as a baking ingredient.
    Mohanan A; Tang YR; Nickerson MT; Ghosh S
    RSC Adv; 2020 Apr; 10(25):14892-14905. PubMed ID: 35497134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application.
    Mohanan A; Harrison K; Cooper DML; Nickerson MT; Ghosh S
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application.
    Tang YR; Ghosh S
    RSC Adv; 2021 Jul; 11(41):25141-25157. PubMed ID: 35478917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of pulse protein-xanthan gum complexes for foam stabilization: The effect of protein concentrate and isolate at various pH.
    Mohanan A; Nickerson MT; Ghosh S
    Food Chem; 2020 Jun; 316():126282. PubMed ID: 32062576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological properties of emulsion templated oleogels based on xanthan gum and different structuring agents.
    Espert M; Hernández MJ; Sanz T; Salvador A
    Curr Res Food Sci; 2022; 5():564-570. PubMed ID: 35340999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical Characterization of Yellow Cake Prepared with Structured Lipid Oleogels.
    Willett SA; Akoh CC
    J Food Sci; 2019 Jun; 84(6):1390-1399. PubMed ID: 31107548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of emulsification behaviour of pea and faba bean protein concentrates and isolates from structure-functionality analysis.
    Keivaninahr F; Gadkari P; Zoroufchi Benis K; Tulbek M; Ghosh S
    RSC Adv; 2021 Mar; 11(20):12117-12135. PubMed ID: 35423776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Oleogel-Based Fat Replacer and Its Application in Pan Bread Making.
    Kim SH; Jo YJ; Lee SH; Park SH
    Foods; 2024 May; 13(11):. PubMed ID: 38890906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high-intensity ultrasound on the oleogelation and physical properties of high melting point monoglycerides and triglycerides oleogels.
    da Silva TLT; Danthine S
    J Food Sci; 2021 Feb; 86(2):343-356. PubMed ID: 33448022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Antioxidant-Fortified Oleogel and Its Application as a Solid Fat Replacer to Muffin.
    Jeong S; Lee S; Oh I
    Foods; 2021 Dec; 10(12):. PubMed ID: 34945610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications.
    Li L; Liu G; Bogojevic O; Pedersen JN; Guo Z
    Compr Rev Food Sci Food Saf; 2022 May; 21(3):2077-2104. PubMed ID: 35279947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and High-Intensity Ultrasound.
    Giacomozzi AS; Palla CA; Carrín ME; Martini S
    J Food Sci; 2019 Sep; 84(9):2549-2561. PubMed ID: 31433063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Characteristic of Insect Oil for a Potential Component of Oleogel and Its Application as a Solid Fat Replacer in Cookies.
    Kim D; Oh I
    Gels; 2022 Jun; 8(6):. PubMed ID: 35735700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edible oleogels based on water soluble food polymers: preparation, characterization and potential application.
    Patel AR; Cludts N; Sintang MD; Lesaffer A; Dewettinck K
    Food Funct; 2014 Nov; 5(11):2833-41. PubMed ID: 25214474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of polysaccharide thickening agent on the preparation of walnut oil oleogels based on methylcellulose: Characterization and delivery of curcumin.
    Xu Y; Sun H; Lv J; Wang Y; Zhang Y; Wang F
    Int J Biol Macromol; 2023 Mar; 232():123291. PubMed ID: 36652980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cooling temperature profiles on the monoglycerides oleogel properties: A rheo-microscopy study.
    Palla C; de Vicente J; Carrín ME; Gálvez Ruiz MJ
    Food Res Int; 2019 Nov; 125():108613. PubMed ID: 31554051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Protein Oleogels: Effect on Structure and Functionality.
    Feichtinger A; Scholten E
    Foods; 2020 Nov; 9(12):. PubMed ID: 33256014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization.
    Kim JY; Lim J; Lee J; Hwang HS; Lee S
    J Food Sci; 2017 Feb; 82(2):445-452. PubMed ID: 28140465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of oleogels from whey protein aerogel particles.
    Plazzotta S; Calligaris S; Manzocco L
    Food Res Int; 2020 Jun; 132():109099. PubMed ID: 32331658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method.
    Abdolmaleki K; Alizadeh L; Nayebzadeh K; Hosseini SM; Shahin R
    J Texture Stud; 2020 Apr; 51(2):290-299. PubMed ID: 31301227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.