These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35497145)

  • 1. Core-shell silica-rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing.
    Lova P; Congiu S; Sparnacci K; Angelini A; Boarino L; Laus M; Di Stasio F; Comoretto D
    RSC Adv; 2020 Apr; 10(25):14958-14964. PubMed ID: 35497145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse silica opal photonic crystals for optical sensing applications.
    Nishijima Y; Ueno K; Juodkazis S; Mizeikis V; Misawa H; Tanimura T; Maeda K
    Opt Express; 2007 Oct; 15(20):12979-88. PubMed ID: 19550567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pumping-power-dependent photoluminescence angular distribution from an opal photonic crystal composed of monodisperse Eu3+/SiO2 core/shell nanospheres.
    Tuyen le D; Lin JH; Wu CY; Tai PT; Tang J; Minh le Q; Kan HC; Hsu CC
    Opt Express; 2012 Jul; 20(14):15418-26. PubMed ID: 22772238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetophotonic response of three-dimensional opals.
    Caicedo JM; Pascu O; López-García M; Canalejas V; Blanco A; López C; Fontcuberta J; Roig A; Herranz G
    ACS Nano; 2011 Apr; 5(4):2957-63. PubMed ID: 21401054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angular shaping of fluorescence from synthetic opal-based photonic crystal.
    Boiko V; Dovbeshko G; Dolgov L; Kiisk V; Sildos I; Loot A; Gorelik V
    Nanoscale Res Lett; 2015; 10():97. PubMed ID: 25852393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic bandgap of inverse opals prepared from core-shell spheres.
    Liu BT; Lin YL; Huang SX
    Nanoscale Res Lett; 2012 Aug; 7(1):457. PubMed ID: 22894600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon structures with three-dimensional periodicity at optical wavelengths.
    Zakhidov AA; Baughman RH; Iqbal Z; Cui C; Khayrullin I; Dantas SO; Marti J; Ralchenko VG
    Science; 1998 Oct; 282(5390):897-901. PubMed ID: 9794752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparency induced in opals via nanometer thick conformal coating.
    Shang G; Furlan KP; Zierold R; Blick RH; Janßen R; Petrov A; Eich M
    Sci Rep; 2019 Aug; 9(1):11379. PubMed ID: 31388189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of self-assembled three-dimensional photonic crystals onto structured silicon wafers.
    Ye J; Zentel R; Arpiainen S; Ahopelto J; Jonsson F; Romanov SG; Sotomayor Torres CM
    Langmuir; 2006 Aug; 22(17):7378-83. PubMed ID: 16893241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opal shell structures: direct assembly versus inversion approach.
    Deng TS; Sharifi P; Marlow F
    Chemphyschem; 2013 Sep; 14(13):2893-6. PubMed ID: 23843257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of the spontaneous emission in mesoporous synthetic opals impregnated with fluorescent guests.
    Yamada Y; Yamada H; Nakamura T; Yano K
    Langmuir; 2009 Dec; 25(23):13599-605. PubMed ID: 19642624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals.
    Gao W; Rigout M; Owens H
    J Nanopart Res; 2016; 18(12):387. PubMed ID: 28042282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation.
    Wang H; Cheng Y; Zhu J; Zhang L
    Chempluschem; 2024 Jul; 89(7):e202400002. PubMed ID: 38527947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mild Sol-Gel Conditions and High Dielectric Contrast: A Facile Processing toward Large-Scale Hybrid Photonic Crystals for Sensing and Photocatalysis.
    Bertucci S; Megahd H; Dodero A; Fiorito S; Di Stasio F; Patrini M; Comoretto D; Lova P
    ACS Appl Mater Interfaces; 2022 May; 14(17):19806-19817. PubMed ID: 35443778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent Aptamer Immobilization on Inverse Colloidal Crystals.
    Chiappini A; Pasquardini L; Nodehi S; Armellini C; Bazzanella N; Lunelli L; Pelli S; Ferrari M; Pietralunga SM
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary inverse opal system for convenient and reversible photonic bandgap tuning.
    Liu ZF; Ding T; Zhang G; Song K; Clays K; Tung CH
    Langmuir; 2008 Sep; 24(18):10519-23. PubMed ID: 18717578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonaqueous sol-gel chemistry applied to atomic layer deposition: tuning of photonic band gap properties of silica opals.
    Marichy C; Dechézelles JF; Willinger MG; Pinna N; Ravaine S; Vallée R
    Nanoscale; 2010 May; 2(5):786-92. PubMed ID: 20648325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals.
    Vlasov YuA; Astratov VN; Baryshev AV; Kaplyanskii AA; Karimov OZ; Limonov MF
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5784-93. PubMed ID: 11031638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a light-emitting planar defect within three-dimensional photonic crystals.
    Liu G; Chen Y; Ye Z
    Sci Technol Adv Mater; 2009 Oct; 10(5):055001. PubMed ID: 27877309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.