These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35497285)

  • 1. Effect of vacancy concentration on the lattice thermal conductivity of CH
    Hong SN; Yu CJ; Jong UG; Choe SH; Kye YH
    RSC Adv; 2021 Oct; 11(54):34015-34023. PubMed ID: 35497285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites.
    Elbaz GA; Ong WL; Doud EA; Kim P; Paley DW; Roy X; Malen JA
    Nano Lett; 2017 Sep; 17(9):5734-5739. PubMed ID: 28806090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of the Organic-Inorganic Interactions on the Thermal Transport Properties of CH3NH3PbI3.
    Hata T; Giorgi G; Yamashita K
    Nano Lett; 2016 Apr; 16(4):2749-53. PubMed ID: 27003760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires.
    Wang Y; Lin R; Zhu P; Zheng Q; Wang Q; Li D; Zhu J
    Nano Lett; 2018 May; 18(5):2772-2779. PubMed ID: 29618206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS
    Ghosh A; Shadman Ahmed S; Shawkat MSA; Subrina S
    Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38906122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency.
    Hanus R; Agne MT; Rettie AJE; Chen Z; Tan G; Chung DY; Kanatzidis MG; Pei Y; Voorhees PW; Snyder GJ
    Adv Mater; 2019 May; 31(21):e1900108. PubMed ID: 30968467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites.
    Thakur S; Giri A
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26755-26765. PubMed ID: 37235795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Study of the Orientation and Order Effects on the Thermoelectric Performance of 2D and 3D Perovskites.
    Wang YH; Yeh CH; Hsieh IT; Yang PY; Hsiao YW; Wu HT; Pao CW; Shih CF
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralow thermal conductivity in all-inorganic halide perovskites.
    Lee W; Li H; Wong AB; Zhang D; Lai M; Yu Y; Kong Q; Lin E; Urban JJ; Grossman JC; Yang P
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8693-8697. PubMed ID: 28760988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe.
    Karthikeyan V; Oo SL; Surjadi JU; Li X; Theja VCS; Kannan V; Lau SC; Lu Y; Lam KH; Roy VAL
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58701-58711. PubMed ID: 34851624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong reduction of thermal conductivity of WSe
    Wang B; Yan X; Yan H; Cai Y
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity.
    Xie H; Hao S; Bao J; Slade TJ; Snyder GJ; Wolverton C; Kanatzidis MG
    J Am Chem Soc; 2020 May; 142(20):9553-9563. PubMed ID: 32320237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN
    Tong Z; Zhang Y; Pecchia A; Yam C; Zhou L; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2023 Mar; 10(9):e2205934. PubMed ID: 36683244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Phonon Dispersion and Lifetimes of Tetragonal CH
    Ma H; Ma Y; Wang H; Slebodnick C; Alatas A; Urban JJ; Tian Z
    J Phys Chem Lett; 2019 Jan; 10(1):1-6. PubMed ID: 30554507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Hashimoto A
    Phys Chem Chem Phys; 2020 Jun; 22(24):13592-13602. PubMed ID: 32515451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Estimation of Phonon Thermal Conductivity from First-Principles Calculations of Elasticity.
    Yan S; Wang Y; Tao F; Ren J
    J Phys Chem A; 2022 Nov; 126(46):8771-8780. PubMed ID: 36351268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning Thermal Conductivity of Hybrid Perovskites through Halide Alloying.
    Wang G; Fan H; Chen Z; Gao Y; Wang Z; Li Z; Lu H; Zhou Y
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401194. PubMed ID: 38647250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling oxygen vacancy impact on lizardite thermo and mechanical properties.
    Pecinatto H; Rêgo CRC; Wenzel W; Frota CA; Perrone BMS; Piotrowski MJ; Guedes-Sobrinho D; Dias AC; Mota C; Gusmão MSS; Frota HO
    Sci Rep; 2023 Oct; 13(1):17157. PubMed ID: 37821570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.