These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35497345)

  • 1. Three Characteristics of Cheetah Galloping Improve Running Performance Through Spinal Movement: A Modeling Study.
    Kamimura T; Sato K; Aoi S; Higurashi Y; Wada N; Tsuchiya K; Sano A; Matsuno F
    Front Bioeng Biotechnol; 2022; 10():825638. PubMed ID: 35497345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical determinants enabling two different types of flight in cheetah gallop to enhance speed through spine movement.
    Kamimura T; Aoi S; Higurashi Y; Wada N; Tsuchiya K; Matsuno F
    Sci Rep; 2021 May; 11(1):9631. PubMed ID: 33953253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A galloping quadruped model using left-right asymmetry in touchdown angles.
    Tanase M; Ambe Y; Aoi S; Matsuno F
    J Biomech; 2015 Sep; 48(12):3383-9. PubMed ID: 26216144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics.
    Hudson PE; Corr SA; Wilson AM
    J Exp Biol; 2012 Jul; 215(Pt 14):2425-34. PubMed ID: 22723482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body torsional flexibility effects on stability during trotting and pacing based on a simple analytical model.
    Adachi M; Aoi S; Kamimura T; Tsuchiya K; Matsuno F
    Bioinspir Biomim; 2020 Jul; 15(5):055001. PubMed ID: 32454464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
    Park HW; Kim S
    Bioinspir Biomim; 2015 Mar; 10(2):025003. PubMed ID: 25806404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method of Changing Running Direction of Cheetah-Inspired Quadruped Robot.
    Ning M; Yang J; Zhang Z; Li J; Wang Z; Wei L; Feng P
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Center of Mass Offset Enhances the Selection of Transverse Gallop in High-Speed Running by Horses: A Modeling Study.
    Yamada T; Aoi S; Adachi M; Kamimura T; Higurashi Y; Wada N; Tsuchiya K; Matsuno F
    Front Bioeng Biotechnol; 2022; 10():825157. PubMed ID: 35295643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spring-mass running: simple approximate solution and application to gait stability.
    Geyer H; Seyfarth A; Blickhan R
    J Theor Biol; 2005 Feb; 232(3):315-28. PubMed ID: 15572057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of the speeds attained by captive cheetahs during the enrichment practice of the "cheetah run".
    Quirke T; O'Riordan R; Davenport J
    Zoo Biol; 2013; 32(5):490-6. PubMed ID: 23861086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fore-Aft Asymmetry Improves the Stability of Trotting in the Transverse Plane: A Modeling Study.
    Adachi M; Aoi S; Kamimura T; Tsuchiya K; Matsuno F
    Front Bioeng Biotechnol; 2022; 10():807777. PubMed ID: 35721869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.
    Hudson PE; Corr SA; Payne-Davis RC; Clancy SN; Lane E; Wilson AM
    J Anat; 2011 Apr; 218(4):363-74. PubMed ID: 21062282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cheetahs (Acinonyx jubatus) running the gauntlet: an evaluation of translocations into free-range environments in Namibia.
    Weise FJ; Lemeris JR; Munro SJ; Bowden A; Venter C; van Vuuren M; van Vuuren RJ
    PeerJ; 2015; 3():e1346. PubMed ID: 26528410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and control of a running spring-mass model with a trunk based on virtual pendulum concept.
    Karagoz OK; Secer G; Ankarali MM; Saranli U
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35523159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.