These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation. Chen G; Xu Q; Yang Y; Li C; Huang T; Sun G; Zhang S; Ma D; Li X ACS Appl Mater Interfaces; 2015 Oct; 7(42):23538-44. PubMed ID: 26455260 [TBL] [Abstract][Full Text] [Related]
23. Trace CO elimination in H Qiu Z; Guo X; Mao J; Zhou R Phys Chem Chem Phys; 2022 Jan; 24(4):2070-2079. PubMed ID: 35015005 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of CeO Liu L; Shi J; Cao H; Wang R; Liu Z Beilstein J Nanotechnol; 2017; 8():2425-2437. PubMed ID: 29234577 [TBL] [Abstract][Full Text] [Related]
26. Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation. Chen CS; Chen TC; Chen CC; Lai YT; You JH; Chou TM; Chen CH; Lee JF Langmuir; 2012 Jul; 28(26):9996-10006. PubMed ID: 22676402 [TBL] [Abstract][Full Text] [Related]
27. Redox properties of doped and supported copper-ceria catalysts. Beckers J; Rothenberg G Dalton Trans; 2008 Dec; (46):6573-8. PubMed ID: 19030619 [TBL] [Abstract][Full Text] [Related]
28. Cu/CeO Wang J; Wang C; Feng Y; Li F; Su W; Fang Y; Zhao B RSC Adv; 2024 May; 14(24):16736-16746. PubMed ID: 38784427 [TBL] [Abstract][Full Text] [Related]
29. The Effect of Exposed Facets of Ceria to the Nickel Species in Nickel-Ceria Catalysts and Their Performance in a NO + CO Reaction. Tang K; Liu W; Li J; Guo J; Zhang J; Wang S; Niu S; Yang Y ACS Appl Mater Interfaces; 2015 Dec; 7(48):26839-49. PubMed ID: 26573213 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional porous CuO-modified CeO Yan X; Zhao L; Huang Y; Zhang J; Jiang S J Hazard Mater; 2023 Aug; 455():131585. PubMed ID: 37163894 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and characterization of CuO/Ce 1-x Ti x O2 catalysts used for low-temperature CO oxidation. Zou ZQ; Meng M; Guo LH; Zha YQ J Hazard Mater; 2009 Apr; 163(2-3):835-42. PubMed ID: 18718718 [TBL] [Abstract][Full Text] [Related]
33. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552 [TBL] [Abstract][Full Text] [Related]
34. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water. Kim KH; Kim JR; Ihm SK J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401 [TBL] [Abstract][Full Text] [Related]
35. Low-Temperature Oxidation of Toluene over MnO Cao Y; Zhang C; Xu D; Ouyang X; Wang Y; Lv L; Zhang T; Tang S; Tang W Inorg Chem; 2022 Sep; 61(38):15273-15286. PubMed ID: 36106618 [TBL] [Abstract][Full Text] [Related]
36. Regulation of Cu Species in CuO/SiO Li H; Ban L; Wang Z; Meng P; Zhang Y; Wu R; Zhao Y Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31159455 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Qin J; Lu J; Cao M; Hu C Nanoscale; 2010 Dec; 2(12):2739-43. PubMed ID: 20941437 [TBL] [Abstract][Full Text] [Related]
38. Support structure and reduction treatment effects on CO oxidation of SiO Li J; Liu Z; Wang R J Colloid Interface Sci; 2018 Dec; 531():204-215. PubMed ID: 30032007 [TBL] [Abstract][Full Text] [Related]
39. Effect of the Configuration of Copper Oxide-Ceria Catalysts in NO Reduction with CO: Superior Performance of a Copper-Ceria Solid Solution. Wang Y; Jiang Q; Xu L; Han ZK; Guo S; Li G; Baiker A ACS Appl Mater Interfaces; 2021 Dec; 13(51):61078-61087. PubMed ID: 34905687 [TBL] [Abstract][Full Text] [Related]