BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 35497767)

  • 1. Synthesis of monolithic shape-stabilized phase change materials with high mechanical stability
    Marske F; Martins de Souza E Silva J; Wehrspohn RB; Hahn T; Enke D
    RSC Adv; 2020 Jan; 10(6):3072-3083. PubMed ID: 35497767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Characterization of Paraffin/Mesoporous Silica Shape-Stabilized Phase Change Materials for Building Thermal Insulation.
    Li Y; Dong M; Song W; Liang X; Chen Y; Liu Y
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental data showing the influence of different boron nitride particles on the silica network, the butyl stearate and the porogens in shape-stabilized phase change materials.
    Marske F; Lindenberg T; Martins de Souza E Silva J; Wehrspohn RB; Maijenburg AW; Hahn T; Enke D
    Data Brief; 2021 Oct; 38():107428. PubMed ID: 34632020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications.
    Mitran RA; Ioniţǎ S; Lincu D; Berger D; Matei C
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33466451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stable Energy Capsules with Nano-SiO
    Graham M; Smith J; Bilton M; Shchukina E; Novikov AA; Vinokurov V; Shchukin DG
    ACS Nano; 2020 Jul; 14(7):8894-8901. PubMed ID: 32539347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal performance enhancement of lauric acid using nanomaterials as composite phase change material.
    Santhanam H; Ali HM; Sharma RK
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):38618-38627. PubMed ID: 38393571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study on the Development of Fly Ash Foam Concrete Containing Phase Change Materials (PCMs).
    Bat-Erdene PE; Pareek S
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compatibility of Phase Change Materials and Metals: Experimental Evaluation Based on the Corrosion Rate.
    Ostrý M; Bantová S; Struhala K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spent Yeast-Derived 3D Porous Carbon Skeleton as Low-Cost D-Mannitol Supporting Material for Medium Temperature Thermal Energy Storage.
    Lv X; Cao H; Li G; Zhu M; Ji W; Wang K; Zhang C; Su C; Ren W; Cai D
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neopentyl Glycol as Active Supporting Media in Shape-Stabilized PCMs.
    Serrano A; Dauvergne JL; Doppiu S; Palomo Del Barrio E
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical 3D Reduced Graphene Porous-Carbon-Based PCMs for Superior Thermal Energy Storage Performance.
    Li A; Dong C; Dong W; Atinafu DG; Gao H; Chen X; Wang G
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32093-32101. PubMed ID: 30160471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductivity Measurement of Flexible Composite Phase-Change Materials Based on the Steady-State Method.
    Feng Z; Xiao X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance enhancement of a thermal energy storage system using shape-stabilized LDPE/hexadecane/SEBS composite PCMs by copper oxide addition.
    Trigui A; Abdelmouleh M; Boudaya C
    RSC Adv; 2022 Aug; 12(34):21990-22003. PubMed ID: 36043091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management.
    Alehosseini E; Jafari SM
    Adv Colloid Interface Sci; 2020 Sep; 283():102226. PubMed ID: 32781300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the core-shell interactions in macrocapsules of organic phase change materials and polysaccharide shell.
    Reddy VJ; Dixit P; Singh J; Chattopadhyay S
    Carbohydr Polym; 2022 Oct; 294():119786. PubMed ID: 35868796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanded Vermiculite/D-Mannitol as Shape-Stable Phase Change Material for Medium Temperature Heat Storage.
    Lv X; Fan C; Han Y; Tang X; Zhang C; Cai D; Chen H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel PEG
    Nistor CL; Gifu IC; Anghel EM; Ianchis R; Cirstea CD; Nicolae CA; Gabor AR; Atkinson I; Petcu C
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoflake-Constructed Supramolecular Hierarchical Porous Microspheres for Fire-Safety and Highly Efficient Thermal Energy Storage.
    Zhao PP; Deng C; Zhao ZY; Huang SC; Lu P; Wang YZ
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28700-28710. PubMed ID: 32479048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity.
    Yang G; Wang B; Cheng H; Mao Z; Xu H; Zhong Y; Feng X; Yu J; Sui X
    Int J Biol Macromol; 2020 Apr; 148():627-634. PubMed ID: 31968214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.