BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 35497767)

  • 21. Diffusion of Shape Stabilized PEG-SiO
    Serrano A; Borreguero AM; Iglesias I; Acosta A; Rodríguez JF; Carmona M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Polyethylene Glycol/Porous Silica Form-Stabilized Phase Change Materials on the Performance of Asphalt Binders.
    Wang H; Pan G; He L; Zou L
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.
    Huang J; Lu S; Kong X; Liu S; Li Y
    Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.
    Xiao X; Zhang P; Meng ZN; Li M
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3135-42. PubMed ID: 26353550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal Characterization of Medium-Temperature Phase Change Materials (PCMs) for Thermal Energy Storage Using the T-History Method.
    Rolka P; Kwidzinski R; Przybylinski T; Tomaszewski A
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Analysis of Phase Change Materials (PCMs)/Expanded Graphite (EG) Composites and Their Thermal Behavior under Hot and Humid Conditions.
    Yang K; Zhang X; Venkataraman M; Wiener J; Palanisamy S; Sozcu S; Tan X; Kremenakova D; Zhu G; Yao J; Militky J
    Chempluschem; 2023 Apr; 88(4):e202300081. PubMed ID: 36951444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cores regulation of paraffin-chitosan phase change microcapsules for constant temperature building.
    Wen B; Tian L; Wei D; Chen Y; Ma Y; Zhao Y; Zhang K; Li Z
    J Colloid Interface Sci; 2024 Oct; 672():338-349. PubMed ID: 38850861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous Dual-Scale Interpenetrating Network Carbon Foam-Stearic Acid Composite as a Shape-Stabilized Phase Change Material with a Desirable Synergistic Effect.
    Wu R; Mei W; Zhou Y; Bi T; Lin Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37120-37133. PubMed ID: 35930699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyethylene Glycol-Calcium Chloride Phase Change Materials with High Thermal Conductivity and Excellent Shape Stability by Introducing Three-Dimensional Carbon/Carbon Fiber Felt.
    Wu X; Shi S; Wang Y; Tang B; Guo L; Gao Y; Jiang T; Yang K; Sun K; Zhao Y; Li W; Yu J
    ACS Omega; 2021 Dec; 6(48):33033-33045. PubMed ID: 34901655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials.
    Williams JD; Peterson GP
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.
    Yang H; Memon SA; Bao X; Cui H; Li D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase Change Material with Gelation Imparting Shape Stability.
    Vasilyev G; Koifman N; Shuster M; Gishvoliner M; Cohen Y; Zussman E
    ACS Omega; 2022 Apr; 7(14):11887-11902. PubMed ID: 35449967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage.
    Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV
    Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures.
    Sam MN; Caggiano A; Mankel C; Koenders E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clay Composites for Thermal Energy Storage: A Review.
    Voronin DV; Ivanov E; Gushchin P; Fakhrullin R; Vinokurov V
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32225028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Phase Change Materials Containing Carbonized Rice husks on the Roof-Surface and Indoor Temperatures for Cool Roof System Application.
    Kim HG; Kim YS; Kwac LK; Park M; Shin HK
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32707670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties.
    Ravotti R; Worlitschek J; Pulham CR; Stamatiou A
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities.
    Atinafu DG; Yun BY; Wi S; Kang Y; Kim S
    Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations of phase change materials for thermal energy storage: a review.
    Tafrishi H; Sadeghzadeh S; Ahmadi R
    RSC Adv; 2022 May; 12(23):14776-14807. PubMed ID: 35702228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.