These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35497830)

  • 41. Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel.
    Xin J; Zhang P; Wolcott MP; Zhang X; Zhang J
    Bioresour Technol; 2014 Mar; 155():422-6. PubMed ID: 24461256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ni-Fe Cocatalysts on Magnesium Silicate Supports for the Depolymerization of Kraft Lignin.
    Laobuthee A; Khankhuean A; Panith P; Veranitisagul C; Laosiripojana N
    ACS Omega; 2023 Mar; 8(9):8675-8682. PubMed ID: 36910962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydroconversion of Kraft lignin for biofuels production using bifunctional rhenium-molybdenum supported zeolitic imidazolate framework nanocatalyst.
    Guo G; Li W; Dou X; Ogunbiyi AT; Ahmed T; Zhang B; Wu M
    Bioresour Technol; 2021 Feb; 321():124443. PubMed ID: 33276209
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media.
    Shao L; Zhang Q; You T; Zhang X; Xu F
    Bioresour Technol; 2018 Sep; 264():238-243. PubMed ID: 29843111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations.
    Hwang H; Lee JH; Choi IG; Choi JW
    Environ Technol; 2019 May; 40(13):1657-1667. PubMed ID: 29333927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Preparation of Cu/ZrO2/S2O8(2-)/gamma-Al2O3 solid acid catalyst and its catalytic activity to selective reduction of NO].
    Guo XK; Wang XM
    Huan Jing Ke Xue; 2008 Jun; 29(6):1737-42. PubMed ID: 18763532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of lignin structure on oil production via hydroprocessing with a copper-doped porous metal oxide catalyst.
    Gillet S; Petitjean L; Aguedo M; Lam CH; Blecker C; Anastas PT
    Bioresour Technol; 2017 Jun; 233():216-226. PubMed ID: 28282608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating.
    Panyadee R; Saengsrichan A; Posoknistakul P; Laosiripojana N; Ratchahat S; Matsagar BM; Wu KC; Sakdaronnarong C
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery.
    Cao Y; Chen SS; Zhang S; Ok YS; Matsagar BM; Wu KC; Tsang DCW
    Bioresour Technol; 2019 Nov; 291():121878. PubMed ID: 31377047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.
    Korányi TI; Huang X; Coumans AE; Hensen EJ
    ACS Sustain Chem Eng; 2017 Apr; 5(4):3535-3543. PubMed ID: 28405528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.
    Bi P; Wang J; Zhang Y; Jiang P; Wu X; Liu J; Xue H; Wang T; Li Q
    Bioresour Technol; 2015 May; 183():10-7. PubMed ID: 25710678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood.
    Phongpreecha T; Christy KF; Singh SK; Hao P; Hodge DB
    Bioresour Technol; 2020 Nov; 316():123907. PubMed ID: 32739581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.
    Duan D; Wang Y; Dai L; Ruan R; Zhao Y; Fan L; Tayier M; Liu Y
    Bioresour Technol; 2017 Oct; 241():207-213. PubMed ID: 28570885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved catalytic depolymerization of lignin waste using carbohydrate derivatives.
    Gu S; Choi JW; Lee H; Suh DJ; Choi J; Ha JM
    Environ Pollut; 2021 Jan; 268(Pt A):115674. PubMed ID: 33011609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst.
    Feng L; Li X; Wang Z; Liu B
    Bioresour Technol; 2021 Mar; 323():124569. PubMed ID: 33360949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Selective Oxidation and Depolymerization of α,γ-Diol-Protected Lignin.
    Lan W; de Bueren JB; Luterbacher JS
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2649-2654. PubMed ID: 30600891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst.
    Liu Q; Bai Y; Chen H; Chen M; Sang Y; Wu K; Ma Z; Ma Y; Li Y
    Bioresour Technol; 2021 Mar; 323():124634. PubMed ID: 33422792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Semi-Batch Hydrotreatment of Lignin-Derived Phenolic Compounds over Raney-Ni with a Continuous Regeneration of the H-Donor Solvent.
    Shumeiko B; Kubička D
    ChemSusChem; 2022 Jan; 15(1):e202102099. PubMed ID: 34784446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation.
    Wang A; Song H
    Bioresour Technol; 2018 Nov; 268():505-513. PubMed ID: 30114670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revisiting alkaline cupric oxide oxidation method for lignin structural analysis.
    Yang G; Gong Z; Luo X; Shuai L
    Front Bioeng Biotechnol; 2022; 10():1002145. PubMed ID: 36159682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.