BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35498085)

  • 1. Facile preparation of high loading filled PVDF/BaTiO
    Song S; Li Y; Wang Q; Zhang C
    RSC Adv; 2021 Nov; 11(60):37923-37931. PubMed ID: 35498085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology.
    Yang C; Chen F; Sun J; Chen N
    ACS Omega; 2021 Nov; 6(45):30769-30778. PubMed ID: 34805705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective laser sintering of a polyamide 11/BaTiO
    Jin Y; Chen N; Li Y; Wang Q
    RSC Adv; 2020 May; 10(35):20405-20413. PubMed ID: 35517736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling selective laser sintering and supercritical CO
    Yang C; Chen N; Liu X; Wang Q; Zhang C
    RSC Adv; 2021 Jun; 11(34):20662-20669. PubMed ID: 35479375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible cellulose-based piezoelectric composite membrane involving PVDF and BaTiO
    Li M; Jiang B; Cao S; Song X; Zhang Y; Huang L; Yuan Q
    RSC Adv; 2023 Mar; 13(15):10204-10214. PubMed ID: 37006353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Flexible BaTiO
    Wei X; Xu K; Wang Y; Zhang Z; Chen Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11740-11748. PubMed ID: 38394674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printing Piezoelectric Composite with Honeycomb Structure for Ultrasonic Devices.
    Zeng Y; Jiang L; Sun Y; Yang Y; Quan Y; Wei S; Lu G; Li R; Rong J; Chen Y; Zhou Q
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32717887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coral-like BaTiO
    Du Y; Jian G; Zhang C; Wang F
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screen Printing of Surface-Modified Barium Titanate/Polyvinylidene Fluoride Nanocomposites for High-Performance Flexible Piezoelectric Nanogenerators.
    Li H; Lim S
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectricity performance and β-phase analysis of PVDF composite fibers with BaTiO
    Mahboubizadeh S; Dilamani ST; Baghshahi S
    Heliyon; 2024 Feb; 10(3):e25021. PubMed ID: 38314297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting.
    Liu X; Shang Y; Zhang J; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PVDF-BaTiO
    Abdolmaleki H; Agarwala S
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33096805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced piezoelectric response in BTO NWs-PVDF composite through tuning of polar phase content.
    Hazra S; Ghatak A; Ghosh A; Sengupta S; Raychaudhuri AK; Ghosh B
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing Architecting β-PVDF Reservoirs for Preferential ZnO Epitaxial Growth Toward Advanced Piezoelectric Energy Harvesting.
    He L; Liu X; Han C; Wang D; Wang Q; Deng X; Zhang C
    Small Methods; 2024 Feb; ():e2301707. PubMed ID: 38343185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.
    Kim K; Zhu W; Qu X; Aaronson C; McCall WR; Chen S; Sirbuly DJ
    ACS Nano; 2014 Oct; 8(10):9799-806. PubMed ID: 25046646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing-Enabled In-Situ Orientation of BaTi
    Liu X; Shang Y; Liu J; Shao Z; Zhang C
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13361-13368. PubMed ID: 35266704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.
    Bodkhe S; Turcot G; Gosselin FP; Therriault D
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20833-20842. PubMed ID: 28553704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile Fabrication of PA12/CNTs Nanocomposites with Enhanced Three-Dimensional Segregated Conductive Networks and Electromagnetic Interference Shielding Property through Selective Laser Sintering.
    Xiong Y; Pei H; Lv Q; Chen Y
    ACS Omega; 2022 Feb; 7(5):4293-4304. PubMed ID: 35155922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.