BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35498250)

  • 1. The FAST Pump, a low-cost, easy to fabricate, SLA-3D-printed peristaltic pump for multi-channel systems in any lab.
    Jönsson A; Toppi A; Dufva M
    HardwareX; 2020 Oct; 8():e00115. PubMed ID: 35498250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A User-Centric 3D-Printed Modular Peristaltic Pump for Microfluidic Perfusion Applications.
    A Cataño J; Farthing S; Mascarenhas Z; Lake N; Yarlagadda PKDV; Li Z; Toh YC
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly-customizable 3D-printed peristaltic pump kit.
    Ching T; Vasudevan J; Tan HY; Lim CT; Fernandez J; Toh YC; Hashimoto M
    HardwareX; 2021 Oct; 10():e00202. PubMed ID: 35607675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics.
    Davis JJ; Padalino M; Kaplitz AS; Murray G; Foster SW; Maturano J; Grinias JP
    Anal Chim Acta; 2021 Mar; 1151():338230. PubMed ID: 33608076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment.
    Milanovic JZ; Milanovic P; Kragic R; Kostic M
    PLoS One; 2018; 13(3):e0193744. PubMed ID: 29509793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling.
    Behrens MR; Fuller HC; Swist ER; Wu J; Islam MM; Long Z; Ruder WC; Steward R
    Sci Rep; 2020 Jan; 10(1):1543. PubMed ID: 32005961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BoSL FAL pump: A small, low-cost, easily constructed, 3D-printed peristaltic pump for sampling of waters.
    McCarthy DT; Shi B; Wang M; Catsamas S
    HardwareX; 2021 Oct; 10():e00214. PubMed ID: 35607656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing.
    Anshori I; Lukito V; Adhawiyah R; Putri D; Harimurti S; Rajab TLE; Pradana A; Akbar M; Syamsunarno MRAA; Handayani M; Purwidyantri A; Prabowo BA
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 'bIUreactor': An Open-Source 3D Tissue Research Platform.
    Butch E; Prideaux M; Holland M; Phan JT; Trent C; Soon V; Hutchins G; Smith L
    Ann Biomed Eng; 2024 Jun; 52(6):1678-1692. PubMed ID: 38532173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses.
    Park SM; Park JM; Kim SK; Heo SJ; Koak JY
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32911702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy evaluation of complete-arch models manufactured by three different 3D printing technologies: a three-dimensional analysis.
    Emir F; Ayyildiz S
    J Prosthodont Res; 2021 Aug; 65(3):365-370. PubMed ID: 33177305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recent development and applications of fluidic channels by 3D printing.
    Zhou Y
    J Biomed Sci; 2017 Oct; 24(1):80. PubMed ID: 29047370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of printing direction on stress distortion of three-dimensional printed dentures using stereolithography technology.
    Hada T; Kanazawa M; Iwaki M; Arakida T; Minakuchi S
    J Mech Behav Biomed Mater; 2020 Oct; 110():103949. PubMed ID: 32957241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.
    Zhang Y; Tseng TM; Schlichtmann U
    Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D printed fluidic device that enables integrated features.
    Anderson KB; Lockwood SY; Martin RS; Spence DM
    Anal Chem; 2013 Jun; 85(12):5622-6. PubMed ID: 23687961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.