These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35498290)

  • 1. Study of the discharge/charge process of lithium-sulfur batteries by electrochemical impedance spectroscopy.
    Qiu X; Hua Q; Zheng L; Dai Z
    RSC Adv; 2020 Jan; 10(9):5283-5293. PubMed ID: 35498290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS.
    Qiu XY; Zhuang QC; Zhang QQ; Cao R; Ying PZ; Qiang YH; Sun SG
    Phys Chem Chem Phys; 2012 Feb; 14(8):2617-30. PubMed ID: 22262135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight on the Li
    Carbone L; Verrelli R; Gobet M; Peng J; Devany M; Scrosati B; Greenbaum S; Hassoun J
    New J Chem; 2016 Mar; 40(3):2935-2943. PubMed ID: 27182193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Properties of Tin Sulfide Nano-Sheets as Cathode Material for Lithium-Sulfur Batteries.
    Saleem M; Mehboob G; Ahmed MS; Khisro SN; Ansar MZ; Mehmood K; Rafiqa-Tul-Rasool ; Alamgir MK; Ejaz A; Ghazanfar M; Hussain S; Ahmed A; Ashfaq JM
    Front Chem; 2020; 8():254. PubMed ID: 32411656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Reaction Interface in Li-Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity.
    Huang J; Tong B; Li Z; Zhou T; Zhang J; Peng Z
    J Phys Chem Lett; 2018 Jun; 9(12):3403-3408. PubMed ID: 29864272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathode-Electrolyte Interfacial Processes in Lithium∥Sulfur Batteries under Lean Electrolyte Conditions.
    Zhao Y; Zhang J; Guo J
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31749-31755. PubMed ID: 34191472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.
    Wu X; Yao S; Hou J; Jing M; Qian X; Shen X; Xiang J; Xi X
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2482-487. PubMed ID: 29648771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "First-Cycle Effect" of Trace Li
    Yuan K; Yuan L; Xiang J; Liao Y; Chen J; Huang Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):698-705. PubMed ID: 34958194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of insoluble polysulfides Li2S(x) (x = 1, 2) on Li2S surfaces.
    Liu Z; Hubble D; Balbuena PB; Mukherjee PP
    Phys Chem Chem Phys; 2015 Apr; 17(14):9032-9. PubMed ID: 25752296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Adsorption of Glutathione on a Gold Electrode by Using Electrochemical Quartz Crystal Impedance, Electrochemical Impedance Spectroscopy, and Cyclic Voltammetry.
    Zhou A; Xie Q; Wu Y; Cai Y; Nie L; Yao S
    J Colloid Interface Sci; 2000 Sep; 229(1):12-20. PubMed ID: 10942538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries.
    Wu X; Liu N; Wang M; Qiu Y; Guan B; Tian D; Guo Z; Fan L; Zhang N
    ACS Nano; 2019 Nov; 13(11):13109-13115. PubMed ID: 31647637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dataset on broadband electrochemical impedance spectroscopy of Lithium-Ion batteries for different values of the state-of-charge.
    Buchicchio E; De Angelis A; Santoni F; Carbone P; Bianconi F; Smeraldi F
    Data Brief; 2022 Dec; 45():108589. PubMed ID: 36160063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Electrochemical Properties of LiNi
    Li J; Li S; Xu S; Huang S; Zhu J
    Nanoscale Res Lett; 2017 Dec; 12(1):414. PubMed ID: 28622717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy.
    Srout M; Carboni M; Gonzalez JA; Trabesinger S
    Small; 2023 Feb; 19(7):e2206252. PubMed ID: 36464645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Li
    Longo RC; Camacho-Forero LE; Balbuena PB
    J Chem Phys; 2020 Jan; 152(1):014701. PubMed ID: 31914763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LiV₃O₈/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries.
    Li W; Zhu L; Yu Z; Xie L; Cao X
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators.
    Gao X; Zheng X; Tsao Y; Zhang P; Xiao X; Ye Y; Li J; Yang Y; Xu R; Bao Z; Cui Y
    J Am Chem Soc; 2021 Nov; 143(43):18188-18195. PubMed ID: 34677957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.