These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35498371)

  • 21. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
    Kujawa SG; Liberman MC
    Hear Res; 2015 Dec; 330(Pt B):191-9. PubMed ID: 25769437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-Related Deficits in Binaural Hearing: Contribution of Peripheral and Central Effects.
    Tolnai S; Weiß M; Beutelmann R; Bankstahl JP; Bovee S; Ross TL; Berding G; Klump GM
    J Neurosci; 2024 Apr; 44(16):. PubMed ID: 38395618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy.
    Guest H; Munro KJ; Prendergast G; Howe S; Plack CJ
    Hear Res; 2017 Feb; 344():265-274. PubMed ID: 27964937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cochlear Neurotrophin-3 overexpression at mid-life prevents age-related inner hair cell synaptopathy and slows age-related hearing loss.
    Cassinotti LR; Ji L; Borges BC; Cass ND; Desai AS; Kohrman DC; Liberman MC; Corfas G
    Aging Cell; 2022 Oct; 21(10):e13708. PubMed ID: 36088647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
    Valero MD; Burton JA; Hauser SN; Hackett TA; Ramachandran R; Liberman MC
    Hear Res; 2017 Sep; 353():213-223. PubMed ID: 28712672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.
    Fernandez KA; Jeffers PW; Lall K; Liberman MC; Kujawa SG
    J Neurosci; 2015 May; 35(19):7509-20. PubMed ID: 25972177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Envelope following responses predict speech-in-noise performance in normal-hearing listeners.
    Mepani AM; Verhulst S; Hancock KE; Garrett M; Vasilkov V; Bennett K; de Gruttola V; Liberman MC; Maison SF
    J Neurophysiol; 2021 Apr; 125(4):1213-1222. PubMed ID: 33656936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Across Species "Natural Ablation" Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing.
    Benichoux V; Ferber A; Hunt S; Hughes E; Tollin D
    J Neurosci; 2018 Oct; 38(40):8563-8573. PubMed ID: 30126974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse.
    Tang X; Zhu X; Ding B; Walton JP; Frisina RD; Su J
    Neuroscience; 2014 Feb; 259():184-93. PubMed ID: 24316061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: The role of stimulus envelope.
    Vasilkov V; Garrett M; Mauermann M; Verhulst S
    Hear Res; 2021 Feb; 400():108132. PubMed ID: 33333426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of age-related hearing loss at the auditory nerve central synapses and postsynaptic neurons in the cochlear nucleus.
    Xie R; Wang M; Zhang C
    Hear Res; 2024 Feb; 442():108935. PubMed ID: 38113793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cochlear synaptopathy and hidden hearing loss: a scoping review.
    Colla MF; Lunardelo PP; Dias FAM
    Codas; 2023; 36(2):e20230032. PubMed ID: 37991055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaural frequency mismatch jointly modulates neural brainstem binaural interaction and behavioral interaural time difference sensitivity in humans.
    Sammeth CA; Brown AD; Greene NT; Tollin DJ
    Hear Res; 2023 Sep; 437():108839. PubMed ID: 37429100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Relative Contribution of Cochlear Synaptopathy and Reduced Inhibition to Age-Related Hearing Impairment for People With Normal Audiograms.
    Gómez-Álvarez M; Johannesen PT; Coelho-de-Sousa SL; Klump GM; Lopez-Poveda EA
    Trends Hear; 2023; 27():23312165231213191. PubMed ID: 37956654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation.
    Brughera A; Mikiel-Hunter J; Dietz M; McAlpine D
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):289-318. PubMed ID: 33861395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-Invasive Assays of Cochlear Synaptopathy - Candidates and Considerations.
    Bharadwaj HM; Mai AR; Simpson JM; Choi I; Heinz MG; Shinn-Cunningham BG
    Neuroscience; 2019 May; 407():53-66. PubMed ID: 30853540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.