These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35498544)

  • 21. Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods.
    Matsuda Y; Hanasaki I; Iwao R; Yamaguchi H; Niimi T
    Phys Chem Chem Phys; 2018 Sep; 20(37):24099-24108. PubMed ID: 30204178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SMTracker: a tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome.
    Rösch TC; Oviedo-Bocanegra LM; Fritz G; Graumann PL
    Sci Rep; 2018 Oct; 8(1):15747. PubMed ID: 30356068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inferring pointwise diffusion properties of single trajectories with deep learning.
    Requena B; Masó-Orriols S; Bertran J; Lewenstein M; Manzo C; Muñoz-Gil G
    Biophys J; 2023 Nov; 122(22):4360-4369. PubMed ID: 37853693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.
    Burnecki K; Kepten E; Garini Y; Sikora G; Weron A
    Sci Rep; 2015 Jun; 5():11306. PubMed ID: 26065707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking.
    Moraffah B; Papandreou-Suppappola A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel computational framework for D(t) from Fluorescence Recovery after Photobleaching data reveals various anomalous diffusion types in live cell membranes.
    Kang M; Day CA; Kenworthy AK
    Traffic; 2019 Nov; 20(11):867-880. PubMed ID: 31452286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation.
    Slator PJ; Cairo CW; Burroughs NJ
    PLoS One; 2015; 10(10):e0140759. PubMed ID: 26473352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust model-based analysis of single-particle tracking experiments with Spot-On.
    Hansen AS; Woringer M; Grimm JB; Lavis LD; Tjian R; Darzacq X
    Elife; 2018 Jan; 7():. PubMed ID: 29300163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracting Diffusive States of Rho GTPase in Live Cells: Towards In Vivo Biochemistry.
    Koo PK; Weitzman M; Sabanaygam CR; van Golen KL; Mochrie SG
    PLoS Comput Biol; 2015 Oct; 11(10):e1004297. PubMed ID: 26512894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena.
    Jin S; Verkman AS
    J Phys Chem B; 2007 Apr; 111(14):3625-32. PubMed ID: 17388520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks.
    Simon F; Tinevez JY; van Teeffelen S
    J Cell Biol; 2023 May; 222(5):. PubMed ID: 36880553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A global sampler of single particle tracking solutions for single molecule microscopy.
    Hirsch M; Wareham R; Yoon JW; Rolfe DJ; Zanetti-Domingues LC; Hobson MP; Parker PJ; Martin-Fernandez ML; Singh SS
    PLoS One; 2019; 14(10):e0221865. PubMed ID: 31658271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical Inference of Transport Mechanisms and Long Time Scale Behavior from Time Series of Solute Trajectories in Nanostructured Membranes.
    Coscia BJ; Calderon CP; Shirts MR
    J Phys Chem B; 2020 Sep; 124(37):8110-8123. PubMed ID: 32790365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of progress in single particle tracking: from methods to biophysical insights.
    Manzo C; Garcia-Parajo MF
    Rep Prog Phys; 2015 Dec; 78(12):124601. PubMed ID: 26511974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The probe rules in single particle tracking.
    Clausen MP; Lagerholm BC
    Curr Protein Pept Sci; 2011 Dec; 12(8):699-713. PubMed ID: 22044141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Devil Is in the Details: What Do We Really Track in Single-Particle Tracking Experiments of Diffusion in Biological Membranes?
    Gurtovenko AA; Javanainen M; Lolicato F; Vattulainen I
    J Phys Chem Lett; 2019 Mar; 10(5):1005-1011. PubMed ID: 30768280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking.
    Smith PR; Morrison IE; Wilson KM; Fernández N; Cherry RJ
    Biophys J; 1999 Jun; 76(6):3331-44. PubMed ID: 10354459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonparametric Bayesian inference for meta-stable conformational dynamics.
    Köhs L; Kukovetz K; Rauh O; Koeppl H
    Phys Biol; 2022 Aug; 19(5):. PubMed ID: 35944548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion.
    Janczura J; Kowalek P; Loch-Olszewska H; Szwabiński J; Weron A
    Phys Rev E; 2020 Sep; 102(3-1):032402. PubMed ID: 33076015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis.
    Jamali V; Hargus C; Ben-Moshe A; Aghazadeh A; Ha HD; Mandadapu KK; Alivisatos AP
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33658362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.