These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35498581)

  • 21. Synthetic scope of Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions: an application to reduction of allylic alcohols by a sequential process of isomerization/Meerwein-Ponndorf-Verley-type reduction.
    Kim JW; Koike T; Kotani M; Yamaguchi K; Mizuno N
    Chemistry; 2008; 14(13):4104-9. PubMed ID: 18338409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Meerwein-Ponndorf-Verley alkynylation of aldehydes: essential modification of aluminium alkoxides for rate acceleration and asymmetric synthesis.
    Ooi T; Miura T; Ohmatsu K; Saito A; Maruoka K
    Org Biomol Chem; 2004 Nov; 2(22):3312-9. PubMed ID: 15534709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent-Assisted Ketone Reduction by a Homogeneous Mn Catalyst.
    Krieger AM; Sinha V; Li G; Pidko EA
    Organometallics; 2022 Jul; 41(14):1829-1835. PubMed ID: 35910260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indium tri(isopropoxide)-catalyzed selective Meerwein-Ponndorf-Verley reduction of aliphatic and aromatic aldehydes.
    Lee J; Ryu T; Park S; Lee PH
    J Org Chem; 2012 May; 77(10):4821-5. PubMed ID: 22563904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts.
    Liu Y; Gao L; Chang G; Zhou W
    Bioresour Technol; 2024 Aug; 406():131001. PubMed ID: 38897549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Tannic Acid-Based Carbon-Supported Cobalt Catalyst for Transfer Hydrogenation of Biomass Derived Ethyl Levulinate.
    Wang M; Yao X; Chen Y; Lin B; Li N; Zhi K; Liu Q; Zhou H
    Front Chem; 2022; 10():964128. PubMed ID: 35898969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mild and efficient flow procedure for the transfer hydrogenation of ketones and aldehydes using hydrous zirconia.
    Battilocchio C; Hawkins JM; Ley SV
    Org Lett; 2013 May; 15(9):2278-81. PubMed ID: 23590578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncatalyzed Meerwein-Ponndorf-Oppenauer-Verley reduction of aldehydes and ketones under supercritical conditions.
    Sominsky L; Rozental E; Gottlieb H; Gedanken A; Hoz S
    J Org Chem; 2004 Mar; 69(5):1492-6. PubMed ID: 14987002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-directional approach to a (-)-dictyostatin C11-C23 segment: development of a highly diastereoselective, kinetically-controlled Meerwein-Ponndorf-Verley reduction.
    Dilger AK; Gopalsamuthiram V; Burke SD
    J Am Chem Soc; 2007 Dec; 129(51):16273-7. PubMed ID: 18047348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Al-free Zr-zeolite beta as a regioselective catalyst in the Meerwein-Ponndorf-Verley reaction.
    Zhu Y; Chuah G; Jaenicke S
    Chem Commun (Camb); 2003 Nov; (21):2734-5. PubMed ID: 14649835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic Meerwein-Ponndorf-Verley reduction in the diastereoselective synthesis of 17α-estradiol.
    Ahmed G; Nickisch K
    Steroids; 2016 Sep; 113():1-4. PubMed ID: 27137355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.
    Chia M; Dumesic JA
    Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Efficient Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol over Mesoporous Zr-Containing Hybrids with 5-Sulfosalicylic Acid as a Ligand.
    Yang J; Guo H; Shen F
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A General Route of Using Lignite Depolymerized Derivatives for Catalyst Construction: Insights into the Effects of the Derivative Structures and Solvents.
    Hao J; Han L; Yang K; Li N; He R; Zhi K; Liu Q
    ACS Omega; 2021 Jun; 6(23):14926-14937. PubMed ID: 34151074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined epimerisation and acylation: Meerwein-Ponndorf-Verley-Oppenauer catalysts in action.
    Klomp D; Djanashvili K; Svennum NC; Chantapariyavat N; Wong CS; Vilela F; Maschmeyer T; Peters JA; Hanefeld U
    Org Biomol Chem; 2005 Feb; 3(3):483-9. PubMed ID: 15678186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of homogeneously and heterogeneously catalysed Meerwein-Ponndorf-Verley-Oppenauer reactions for the racemisation of secondary alcohols.
    Klomp D; Maschmeyer T; Hanefeld U; Peters JA
    Chemistry; 2004 Apr; 10(8):2088-93. PubMed ID: 15079849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Synthesis of Amides from Benzonitriles and Benzylic Alcohols via a KO
    Li G; Li M; Xia Z; Tan Z; Deng W; Fang C
    J Org Chem; 2022 Jul; 87(14):8884-8891. PubMed ID: 35758138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent development of asymmetric syntheses based on the Meerwein-Ponndorf-Verley reduction.
    Nishide K; Node M
    Chirality; 2002 Nov; 14(10):759-67. PubMed ID: 12395393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unveiling the Brønsted acid mechanism for Meerwein-Ponndorf-Verley reduction in methanol conversion over ZSM-5.
    Cai W; Wang C; Chu Y; Hu M; Wang Q; Xu J; Deng F
    Nat Commun; 2024 Oct; 15(1):8736. PubMed ID: 39384793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.