These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35498682)

  • 21. Estimation of rice seedling growth traits with an end-to-end multi-objective deep learning framework.
    Ye Z; Tan X; Dai M; Lin Y; Chen X; Nie P; Ruan Y; Kong D
    Front Plant Sci; 2023; 14():1165552. PubMed ID: 37332711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.
    Rahaman MM; Ahsan MA; Gillani Z; Chen M
    J Integr Bioinform; 2017 Sep; 14(3):. PubMed ID: 28862986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice crops.
    Colorado JD; Calderon F; Mendez D; Petro E; Rojas JP; Correa ES; Mondragon IF; Rebolledo MC; Jaramillo-Botero A
    PLoS One; 2020; 15(10):e0239591. PubMed ID: 33017406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning for Strawberry Canopy Delineation and Biomass Prediction from High-Resolution Images.
    Zheng C; Abd-Elrahman A; Whitaker VM; Dalid C
    Plant Phenomics; 2022; 2022():9850486. PubMed ID: 36320455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lettuce Production in Intelligent Greenhouses-3D Imaging and Computer Vision for Plant Spacing Decisions.
    Petropoulou AS; van Marrewijk B; de Zwart F; Elings A; Bijlaard M; van Daalen T; Jansen G; Hemming S
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level.
    Jin S; Su Y; Song S; Xu K; Hu T; Yang Q; Wu F; Xu G; Ma Q; Guan H; Pang S; Li Y; Guo Q
    Plant Methods; 2020; 16():69. PubMed ID: 32435271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic Non-Destructive Growth Measurement of Leafy Vegetables Based on Kinect.
    Hu Y; Wang L; Xiang L; Wu Q; Jiang H
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29518958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control of Soybean Biomass Production.
    Freitas Moreira F; Rojas de Oliveira H; Lopez MA; Abughali BJ; Gomes G; Cherkauer KA; Brito LF; Rainey KM
    Front Plant Sci; 2021; 12():715983. PubMed ID: 34539708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System.
    Cao W; Zhou J; Yuan Y; Ye H; Nguyen HT; Chen J; Zhou J
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth Analysis of Wheat Using Machine Vision: Opportunities and Challenges.
    Ajlouni M; Kruse A; Condori-Apfata JA; Valderrama Valencia M; Hoagland C; Yang Y; Mohammadi M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yield prediction by machine learning from UAS-based mulit-sensor data fusion in soybean.
    Herrero-Huerta M; Rodriguez-Gonzalvez P; Rainey KM
    Plant Methods; 2020; 16():78. PubMed ID: 32514286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer Vision-Based Biomass Estimation for Invasive Plants.
    Huang Z; Xu Z; Li Y; Liu B; Liu C; Qiao X; Qian W; Qin F; Li P; Huang Y
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38407282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.
    Du J; Lu X; Fan J; Qin Y; Yang X; Guo X
    Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-cost and automated phenotyping system "Phenomenon" for multi-sensor in situ monitoring in plant in vitro culture.
    Bethge H; Winkelmann T; Lüdeke P; Rath T
    Plant Methods; 2023 May; 19(1):42. PubMed ID: 37131210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Validation of a Phenotyping Computational Workflow to Predict the Biomass Yield of a Large Perennial Ryegrass Breeding Field Trial.
    Gebremedhin A; Badenhorst P; Wang J; Shi F; Breen E; Giri K; Spangenberg GC; Smith K
    Front Plant Sci; 2020; 11():689. PubMed ID: 32547584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-destructive Phenotyping to Identify
    Jiménez JC; Cardoso JA; Leiva LF; Gil J; Forero MG; Worthington ML; Miles JW; Rao IM
    Front Plant Sci; 2017; 8():167. PubMed ID: 28243249
    [No Abstract]   [Full Text] [Related]  

  • 40. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean.
    Liao C; Wang J; Dong T; Shang J; Liu J; Song Y
    Sci Total Environ; 2019 Feb; 650(Pt 2):1707-1721. PubMed ID: 30273730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.