These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35498833)

  • 1. Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries.
    Zhang Y; Gao P; Guo X; Chen H; Zhang R; Du Y; Wang B; Yang H
    RSC Adv; 2020 Apr; 10(28):16732-16736. PubMed ID: 35498833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries.
    Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z
    ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porphyrin-Thiophene Based Conjugated Polymer Cathode with High Capacity for Lithium-Organic Batteries.
    Wu X; Zhou W; Ye C; Zhang J; Liu Z; Yang C; Peng J; Liu J; Gao P
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202317135. PubMed ID: 38332748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thianthrene-based small molecule as a high-potential cathode for lithium-organic batteries.
    Fu M; Zhang C; Chen Y; Fan K; Zhang G; Zou J; Gao Y; Dai H; Wang X; Wang C
    Chem Commun (Camb); 2022 Oct; 58(85):11993-11996. PubMed ID: 36217964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dihydrophenazine-derived oligomers from industrial waste as sustainable superior cathode materials for rechargeable lithium-ion batteries.
    He Q; Lv S; Huang Y; Guo J; Peng X; Du Y; Yang H
    RSC Adv; 2023 Apr; 13(18):12464-12468. PubMed ID: 37091595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries.
    Wang J; Yan X; Zhang Z; Guo R; Ying H; Han G; Han WQ
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41323-41332. PubMed ID: 32830944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery.
    Yao CJ; Wu Z; Xie J; Yu F; Guo W; Xu ZJ; Li DS; Zhang S; Zhang Q
    ChemSusChem; 2020 May; 13(9):2457-2463. PubMed ID: 31782976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries.
    Su Y; Liu Y; Liu P; Wu D; Zhuang X; Zhang F; Feng X
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1812-6. PubMed ID: 25515597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenothiazine-Functionalized Poly(norbornene)s as High-Rate Cathode Materials for Organic Batteries.
    Otteny F; Studer G; Kolek M; Bieker P; Winter M; Esser B
    ChemSusChem; 2020 May; 13(9):2232-2238. PubMed ID: 31851423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenothiazine-Based Donor-Acceptor Polymers as Multifunctional Materials for Charge Storage and Solar Energy Conversion.
    Wessling R; Delgado Andrés R; Morhenn I; Acker P; Maftuhin W; Walter M; Würfel U; Esser B
    Macromol Rapid Commun; 2024 Jan; 45(1):e2200699. PubMed ID: 36333908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.
    Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S
    ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries.
    Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.