These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35498857)

  • 1. Structural and electronic properties of α-, β-, γ-, and 6,6,18-graphdiyne sheets and nanotubes.
    Li L; Qiao W; Bai H; Huang Y
    RSC Adv; 2020 Apr; 10(28):16709-16717. PubMed ID: 35498857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.
    Zhu Y; Bai H; Huang Y
    J Phys Condens Matter; 2016 Feb; 28(4):045303. PubMed ID: 26744378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets.
    Xiao J; Long M; Zhang X; Ouyang J; Xu H; Gao Y
    Sci Rep; 2015 Jun; 5():9961. PubMed ID: 26035176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Properties of 2D Carbon-Graphdiyne.
    Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y
    Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and transport property of two-dimensional boron phosphide sheet.
    Mondal R; Bedamani Singh N; Deb J; Mukherjee S; Sarkar U
    J Mol Graph Model; 2022 May; 112():108117. PubMed ID: 34995892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS₂ nanotubes.
    Xiao J; Long M; Li X; Xu H; Huang H; Gao Y
    Sci Rep; 2014 Mar; 4():4327. PubMed ID: 24608863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties.
    Serafini P; Milani A; Proserpio DM; Casari CS
    J Phys Chem C Nanomater Interfaces; 2021 Aug; 125(33):18456-18466. PubMed ID: 34476043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton effect in new generation of carbon nanotubes: graphdiyne nanotubes.
    Houshmand F; Friedman R; Jalili S; Schofield J
    J Mol Model; 2020 Jun; 26(7):171. PubMed ID: 32524265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes.
    Zha XH; Zhou J; Zhou Y; Huang Q; He J; Francisco JS; Luo K; Du S
    Nanoscale; 2016 Mar; 8(11):6110-7. PubMed ID: 26932122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphdiyne and Its Derivatives as Efficient Charge Reservoirs and Transporters in Semiconductor Devices.
    Niu G; Wang Y; Yang Z; Cao S; Liu H; Wang J
    Adv Mater; 2023 Jun; 35(25):e2212159. PubMed ID: 36724887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of staggered stacking 2D BeP semiconductor with unique anisotropic electronic properties.
    Meng LB; Zhang YJ; Ni S
    J Phys Condens Matter; 2020 Feb; 32(8):085301. PubMed ID: 31694008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional TeB Structures with Anisotropic Carrier Mobility and Tunable Bandgap.
    Zhang Y; Qu X; Yang L; Zhong X; Wang D; Wang J; Sun B; Liu C; Lv J; Yang J
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of highly anisotropic electrical conductance of tellurene by strain-engineering.
    Ma H; Hu W; Yang J
    Nanoscale; 2019 Nov; 11(45):21775-21781. PubMed ID: 31701993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of intrinsic charge transport for Dirac carbon sheet materials: roles of acetylenic linkage and electron-phonon couplings.
    Liu C; Yang J; Xi J; Ke X
    Nanoscale; 2019 Jun; 11(22):10828-10837. PubMed ID: 31135021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry, electronic structures and optical properties of phosphorus nanotubes.
    Hu T; Hashmi A; Hong J
    Nanotechnology; 2015 Oct; 26(41):415702. PubMed ID: 26391069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilizing benzene-like planar N
    Li X; Zhang S; Zhang C; Wang Q
    Nanoscale; 2018 Jan; 10(3):949-957. PubMed ID: 29215121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Accelerating World of Graphdiynes.
    Sakamoto R; Fukui N; Maeda H; Matsuoka R; Toyoda R; Nishihara H
    Adv Mater; 2019 Oct; 31(42):e1804211. PubMed ID: 31222848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity.
    Guo S; Yan H; Wu F; Zhao L; Yu P; Liu H; Li Y; Mao L
    Anal Chem; 2017 Dec; 89(23):13008-13015. PubMed ID: 29124941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of structural, electronic and thermoelectric properties of two-dimensional graphdiyne/borophene monolayers and hetero-bilayers.
    Jalili S; Pakzadiyan A
    J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34929681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and electronic properties of the double-wall nanotubes constructed from SiO2 nanotubes encapsulated inside zigzag carbon nanotubes.
    Qiao W; Bai H; Zhu Y; Huang Y
    J Phys Condens Matter; 2012 May; 24(18):185302. PubMed ID: 22481241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.