These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35499556)

  • 21. Shoe-Insole Technology for Injury Prevention in Walking.
    Nagano H; Begg RK
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP).
    Choi HS; Lee CH; Shim M; Han JI; Baek YS
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system.
    Mun F; Choi A
    J Neuroeng Rehabil; 2022 Jan; 19(1):4. PubMed ID: 35034658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-shoe center of pressure: indirect force plate vs. direct insole measurement.
    Debbi EM; Wolf A; Goryachev Y; Yizhar Z; Luger E; Debi R; Haim A
    Foot (Edinb); 2012 Dec; 22(4):269-75. PubMed ID: 22938890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insole effects on impact loading during walking.
    Creaby MW; May K; Bennell KL
    Ergonomics; 2011 Jul; 54(7):665-71. PubMed ID: 21770753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of pedar and F-Scan revisited.
    Quesada P; Rash G; Jarboe N
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S15. PubMed ID: 11415717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Reliability and Validity of the Loadsol
    Renner KE; Williams DSB; Queen RM
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reproducibility test on a children's insole for measuring the dynamic plantar pressure distribution.
    Hayes A; Seitz P
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S4-S5. PubMed ID: 11415700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A wearable ground reaction force sensor system and its application to the measurement of extrinsic gait variability.
    Liu T; Inoue Y; Shibata K
    Sensors (Basel); 2010; 10(11):10240-55. PubMed ID: 22163468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pressure insole sampling frequency on insole-measured peak force accuracy during running.
    Elstub LJ; Grohowski LM; Wolf DN; Owen MK; Noehren B; Zelik KE
    J Biomech; 2022 Dec; 145():111387. PubMed ID: 36442432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Three-Directional Ground Reaction Forces during Walking Using a Shoe Sole Sensor System and Machine Learning.
    Yamaguchi T; Takahashi Y; Sasaki Y
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of Moticon's OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements.
    Stöggl T; Martiner A
    J Sports Sci; 2017 Jan; 35(2):196-206. PubMed ID: 27010531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity of the Pedar Mobile system for vertical force measurement during a seven-hour period.
    Hurkmans HL; Bussmann JB; Selles RW; Horemans HL; Benda E; Stam HJ; Verhaar JA
    J Biomech; 2006; 39(1):110-8. PubMed ID: 16271594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy and precision of two in-shoe pressure measurement systems.
    Hsiao H; Guan J; Weatherly M
    Ergonomics; 2002 Jun; 45(8):537-55. PubMed ID: 12167198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foot Sole Contact Forces vs. Ground Contact Forces to Obtain Foot Joint Moments for In-Shoe Gait-A Preliminary Study.
    Sancho-Bru JL; Sanchis-Sales E; Rodríguez-Cervantes PJ; Vergés-Salas C
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using load sensing insoles to identify knee kinetic asymmetries during landing in patients with an Anterior Cruciate Ligament reconstruction.
    Marrs RP; Covell HS; Peebles AT; Ford KR; Hart JM; Queen RM
    Clin Biomech (Bristol, Avon); 2023 Apr; 104():105941. PubMed ID: 36958202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STrain Analysis and Mapping of the Plantar Surface (STAMPS): A novel technique of plantar load analysis during gait.
    Jones AD; Crossland SR; Nixon JE; Siddle HJ; Russell DA; Culmer PR
    Proc Inst Mech Eng H; 2023 Jul; 237(7):841-854. PubMed ID: 37353979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Different Insole Materials on Kinetic and Kinematic Variables of the Walking Gait in Healthy People.
    Özmanevra R; Angin S; Günal İH; Elvan A
    J Am Podiatr Med Assoc; 2018 Sep; 108(5):390-396. PubMed ID: 31136720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.