These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35499883)

  • 1. Quantum Phases of Transition Metal Dichalcogenide Moiré Systems.
    Zhou Y; Sheng DN; Kim EA
    Phys Rev Lett; 2022 Apr; 128(15):157602. PubMed ID: 35499883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands.
    Wu F; Lovorn T; Tutuc E; MacDonald AH
    Phys Rev Lett; 2018 Jul; 121(2):026402. PubMed ID: 30085734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting of generalized Wigner crystals in transition metal dichalcogenide heterobilayer Moiré systems.
    Matty M; Kim EA
    Nat Commun; 2022 Nov; 13(1):7098. PubMed ID: 36402757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated insulating states at fractional fillings of moiré superlattices.
    Xu Y; Liu S; Rhodes DA; Watanabe K; Taniguchi T; Hone J; Elser V; Mak KF; Shan J
    Nature; 2020 Nov; 587(7833):214-218. PubMed ID: 33177668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators.
    Ryee S; Wehling TO
    Nano Lett; 2023 Jan; 23(2):573-579. PubMed ID: 36622289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Mott transition in semiconductor moiré superlattices.
    Li T; Jiang S; Li L; Zhang Y; Kang K; Zhu J; Watanabe K; Taniguchi T; Chowdhury D; Fu L; Shan J; Mak KF
    Nature; 2021 Sep; 597(7876):350-354. PubMed ID: 34526709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valley-Polarized Quantum Anomalous Hall State in Moiré MoTe_{2}/WSe_{2} Heterobilayers.
    Xie YM; Zhang CP; Hu JX; Mak KF; Law KT
    Phys Rev Lett; 2022 Jan; 128(2):026402. PubMed ID: 35089739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metal-insulator transition in the half-filled extended Hubbard model on a triangular lattice.
    Gao J; Wang J
    J Phys Condens Matter; 2009 Dec; 21(48):485702. PubMed ID: 21832529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mott and generalized Wigner crystal states in WSe
    Regan EC; Wang D; Jin C; Bakti Utama MI; Gao B; Wei X; Zhao S; Zhao W; Zhang Z; Yumigeta K; Blei M; Carlström JD; Watanabe K; Taniguchi T; Tongay S; Crommie M; Zettl A; Wang F
    Nature; 2020 Mar; 579(7799):359-363. PubMed ID: 32188951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure.
    Zhou Y; Sung J; Brutschea E; Esterlis I; Wang Y; Scuri G; Gelly RJ; Heo H; Taniguchi T; Watanabe K; Zaránd G; Lukin MD; Kim P; Demler E; Park H
    Nature; 2021 Jul; 595(7865):48-52. PubMed ID: 34194017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconductivity and density-wave fluctuations in an extended triangular Hubbard model: an application to SnSe
    Li YX; Yao ZJ; Yu SL; Li JX
    J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-Spin Terms and the Origin of the Chiral Spin Liquid in Mott Insulators on the Triangular Lattice.
    Cookmeyer T; Motruk J; Moore JE
    Phys Rev Lett; 2021 Aug; 127(8):087201. PubMed ID: 34477420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Signatures of Periodic Magnetization: The Moiré Zeeman Effect.
    Salvador AG; Kuhlenkamp C; Ciorciaro L; Knap M; İmamoğlu A
    Phys Rev Lett; 2022 Jun; 128(23):237401. PubMed ID: 35749170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor moiré materials.
    Mak KF; Shan J
    Nat Nanotechnol; 2022 Jul; 17(7):686-695. PubMed ID: 35836003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal Interactions in Moiré Hubbard Systems.
    Morales-Durán N; Hu NC; Potasz P; MacDonald AH
    Phys Rev Lett; 2022 May; 128(21):217202. PubMed ID: 35687431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions.
    Baek H; Brotons-Gisbert M; Campbell A; Vitale V; Lischner J; Watanabe K; Taniguchi T; Gerardot BD
    Nat Nanotechnol; 2021 Nov; 16(11):1237-1243. PubMed ID: 34556832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SU(4) Chiral Spin Liquid, Exciton Supersolid, and Electric Detection in Moiré Bilayers.
    Zhang YH; Sheng DN; Vishwanath A
    Phys Rev Lett; 2021 Dec; 127(24):247701. PubMed ID: 34951785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable quantum criticalities in an isospin extended Hubbard model simulator.
    Li Q; Cheng B; Chen M; Xie B; Xie Y; Wang P; Chen F; Liu Z; Watanabe K; Taniguchi T; Liang SJ; Wang D; Wang C; Wang QH; Liu J; Miao F
    Nature; 2022 Sep; 609(7927):479-484. PubMed ID: 36104555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.